首頁 > 文章中心 > 傳輸技術論文

      傳輸技術論文

      前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇傳輸技術論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

      傳輸技術論文

      傳輸技術論文范文第1篇

      [論文摘要]3G的時代已經來臨,其主要技術標準WCDMA和CDMA2000誰優誰劣自然引起了我們的關注。本文從各個方面對兩個技術標準做了全面的對比研究。

      一、引言

      上世紀70年代末,誕生了被稱為第一代蜂窩移動通信系統的雙工FDMA模擬調頻系統,但由于模擬系統固有的先天缺陷,在90年代初被以TDMA為基礎的第二代數字蜂窩移動通信系統所取代,相對FDMA系統有諸多優點,如頻譜利用率高,系統容量大、保密性好等。與此同時產生了以CDMA為基礎的數字蜂窩通信系統,相比TDMA系統具有低發射功率、信道容量大、軟容量、軟切換、采用多種分集技術等優點。

      隨著網絡的廣泛普及,圖像、話音和數據相結合的多媒體和高速率數據業務的業務量大大增加,人們對通信業務多樣化的要求也與日俱增,而一代二代系統遠遠不能滿足用戶的這些需求,所以誕生了第三代移動通信技術,它能夠處理圖像、音樂、視頻流等多種媒體形式,提供包括網頁瀏覽、電話會議、電子商務等多種信息服務。國際上承認的3G標準有三個:CDMA2000、WCDMA以及TD-SCDMA,這里主要從各個方面做WCDMA和CDMA2000的對比研究。

      二、WCDMA和CDMA2000的綜合比較

      由于WCDMA和CDMA2000這兩種技術都是將CDMA技術用于蜂窩系統,許多的思想都是源于CDMA系統,因此WCDMA和CDMA2000有許多相試之處:從雙工方式上看,WCDMA和CDMA2000屬于FDD模式。WCDMA和CDMA2000都滿足IMT-2000提出的技術要求,支持高速多媒體業務、分組數據和IP接入等。但它們在技術實現、規范標準化、網絡演進等方面都存在較大差異。

      WCDMA和CDMA2000各有優勢和缺點。WCDMA技術較成熟,能同廣泛使用的GSM系統兼容;相比第二代通信系統能提供更加靈活的服務;而且WCDMA能靈活處理不同速率的業務。其缺點是只能共用現有GSM系統的核心網部分,無線側設備可以共用的很少。

      CDMA2000的優勢是可以和窄帶CDMA的基站設備很好地兼容,能夠從窄帶CDMA系統平滑升級,只需增加新的信道單元,升級成本較低,核心網和大部分的無線設備都可用。容量也比IS-95A增加了兩倍,手機待機時間也增加了兩倍。缺點是CDMA2000系統無法和GSM系統兼容。

      1.WCDMA與CDMA2000的物理層技術比較

      WCDMA和CDMA2000物理層技術細節上有相似也有差異,由于考慮出發點不同,造成了不同的技術特點。WCDMA技術規范充分考慮了與第二代GSM移動通信系統的互操作性和對GSM核心網的兼容性;CDMA2000的開發策略是對以IS-95標準為藍本的窄帶CDMA的平滑升級。

      (1)這兩個標準的物理層技術相似點可以歸納為以下幾點:

      ①內環均采用快速功率控制。CDMA系統是干擾受限系統,因此為了提高系統容量,應盡可能的降低系統的干擾。功率控制技術可以減少一系列的干擾,這意味著同一小區內可容納更多的用戶數,即小區的容量增加。因此CDMA系統中引入功率控制技術是非常必要的。

      ②系統都支持開環發射分集,信道編碼采用卷積碼和Turbo碼。

      ③系統均采用軟切換技術。所謂軟切換是指移動臺需要切換時,先與新的基站連通再與原基站切斷聯系,而不是先切斷與原基站的聯系再與新的基站連通。軟切換只能在同一頻率的信道間進行,因此模擬系統、TDMA系統不具有這種功能。軟切換可以有效地提高切換的可靠性,大大減少切換造成的掉話。

      ④WCDMA工作頻段:1900~2025MHz頻段分配給FDD上行鏈路使用,2110~2170MHz頻段分配給FDD下行鏈路使用,2110~2170MHz頻段分配給TDD雙工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz頻段(上行),2110~2170MHz(下行)。

      (2)兩個標準的物理層技術差異可以歸納為以下幾點:

      ①擴頻碼片速率和射頻帶寬。WCDMA根據ITU關于5MHz信道基本帶寬的劃分規則,將基本碼片速率定為3.84Mcps。WCDMA使用帶寬和碼片速率是CDMA2000-1X的3倍以上,能提供更大的多路徑分集、更高的中繼增益和更小的信號開銷。CDMA2000分兩個方案,即CDMA2000-1X和CDMA2000-3X兩個階段。CDMA2000系統可支持話音、分組數據等業務,并且可實現QoS的協商。室內最高數據速率達2Mbit/s,步行環境384kb/s,車載環境144kb/s。CDMA2000在前向和反向CDMA信道在單載波上采用碼片速率1.2288Mcps的直接序列擴頻,射頻帶寬為1.25MHz。

      ②支持不同的核心網標準。WCDMA要求實現與GSM網絡的兼容,所以它把GSMMAP協議作為上層核心網絡議;CDMA2000要求兼容窄帶CDMA,因此它把ANSI-41作為自己的核心網絡協議。

      ③WCDMA進行功率控制的速度是CDMA2000的2倍,能保證更好的信號質量,并支持多用戶。

      ④為了使支持基于GSM的GPRS業務而部署的所有業務也支持WCDMA業務,為了完善新的數據話音網絡,CDMA2000-1x需要添加額外的網元或進行功能升級。

      2.WCDMA與CDMA2000網絡接口的比較

      3G標準的基本目標是能在車載、步行和靜止各種不同環境下為多個用戶分別提供最高為144kbit/s、384kbit/s和2048kbit/s的無線接入數據速率。為多個用戶提供可變的無線接入數率是3G標準的核心要求。CDMA2000可分別用于900MHZ和2GHZ兩個頻段CDMA2000的碼片速率與IS-95相同,兩系統可以兼容。WCDMA的碼片速率為3.84Mcps,顯然WCDMA系統中低速率用戶或語音用戶的移動臺成本會大幅上升,在CDMA2000系統中則不會如此。

      WCDMA的接口標準規范、制定嚴謹、組織嚴密,而CDMA2000的接口標準嚴謹性有待加強。IS-95廠家設備難以互通,給運營商設備選型帶來了較大問題;3G許諾的高速無線數據服務必須可以和話音一樣實現無縫的漫游,這是至關重要的。多媒體信息要漫游、視頻通話也要漫游,沒有這些基本要素,3G就不能稱其為3G。漫游涉及到的不僅僅是技術問題,更重要的是商業利益。在這方面WCDMA顯然更勝一籌,它支持全球漫游,全球移動用戶均有唯一標識,而CDMA2000尚不能很好做到這一點。

      3.WCDMA和CDMA2000網絡演進的比較

      (1)WCDMA的網絡演進技術

      現有的GSM系統利用單一時隙可提供9.6kbit/s的數據服務。如果復用多個時隙就能升級為HSCSD(高速電路交換數據)方式;此后出現了GPRS(通用分組無線業務),首次在核心網中引入了分組交換的方式,可提供144kbit/s的數據速率。接著繼續升級采用8PSK調制,這樣傳輸速率可以上升至384kbit/s這就是EDGE;WCDMA的數據傳輸速率將高達2M/s。

      (2)CDMA2000網絡演進技術

      主要的CDMA2000運營商將來自現在的窄帶CDMA運營商。窄帶CDMA向CDMA2000過渡的方式為IS-95AIS95BIS-95CIMT2000。IS-95A的數據傳輸速率為14.4kbit/s,為了提供更高的速率,1999年部分廠商開始采用IS-95B標準,理論上支持115.2kbit/s的速率。IS-95C進一步使容量加倍,最后升級為CDMA2000。

      窄帶CDMA系統向CDMA2000系統的演進分為空中接口、網絡接口及核心網絡演進等方面。

      ①目前窄帶CDMA系統的空中接口是基于IS295A,其支持的數據速率為14.4kbit/s,由IS295A升級到IS295B,可支持64kbit/s。

      ②窄帶CDMA網絡接口的演進主要指窄帶CDMA系統A接口的升級和演進。對于窄帶CDMA系統,以前其A接口不是規范接口(即不是開放接口),窄帶CDMA和GSM的A接口的規范相比較,GSM是先有A接口標準,然后廠家依據標準開發;窄帶CDMA是廠家各自開發,然后廣泛宣傳,最后憑借自身影響修改標準。

      ③窄帶CDMA的核心網在美國經過多年發展后,從IS241A到IS241B到IS241C,我國CDMA試驗網和紅皮書以IS241C為基礎,IS241D規范在1999年底,目前IS241E規范還未正式。

      三、WCDMA和CDMA2000在我國的前景

      對3G標準的選擇不僅要看其技術原理及成熟程度,還要結合本國國情、市場運作狀況等因素進行考慮。按目前的進展來看,兩種標準最后不能融合成一種,但可以共存。

      在我國,GSMMAP網絡已形成巨大的規模,歐洲標準的WCDMA在網絡上充分考慮到與第二代的GSM的兼容性,在技術上也考慮了與GSM的雙模切換兼容,向WCDMA體制的第三代系統演進,從一開始就解決了全網覆蓋的問題。而且CDMA2000采用GPS系統,對GPS依賴較大;在小區站點同步方面,CDMA2000基站通過GPS實現同步,將造成室內和城市小區部署的困難,而WCDMA設計可以使用異步基站,運營者獨立性強;對于電信設備制造行業,我國在GSM蜂窩移動通信方面發展成熟,而窄帶CDMA系統尚未形成規模和產業。

      WCDMA采用全新的CDMA多址技術,并且使用新的頻段及話音編碼技術等。因此GSM網絡雖然可采用一些臨時的替代方案提供中等速率的數據服務,卻不能提供一種相對平滑的路徑以過渡到WCDMA。而CDMA2000的設計是以IS-95系統的豐富經驗為依據的,因此窄帶CDMA向CDMA2000的演進無論從無線還是網絡部分都更為平滑。在基站方面只需更新信道板,并將系統軟件升級,即可將IS-95基站升級為CDMA2000基站。

      由此可見,WCDMA和CDMA2000還將長時間在我國共存,鹿死誰手?尚未分曉。

      參考文獻:

      [1]TeroOjanpera,RamjeePrasad.朱旭紅譯.寬帶CDMA:第三代移動通信技術.北京:人民郵電出版社.

      傳輸技術論文范文第2篇

      1.1計算機通信技術的定義計算機通信技術是將現代計算機技術與通信技術進行有機融合,來實現信息資源在計算機同終端設備間或者計算機同計算機間以數據形式進行傳遞的一種現代化通信手段。隨著科技的飛速發展,社會的不斷進步,計算機通信技術在人們的學習、工作與社會生活中應用得越發廣泛,如今正以其對龐雜信息處理、傳遞和利用的便捷與高效受到更多人的青睞,在辦公自動化系統、軍隊指揮自動化系統、信息處理系統等領域發揮著越來越重要的作用。

      1.2計算機通信技術的原理計算機通信技術應用的基本原理是通過使用計算機語言二進制數中的0和1來表示高壓電平的轉換方式,把電信號初步轉換成邏輯信號,再把所有的信息用具差異性的二進制序列予以表示,即用二進制數中0和1的比特流電壓來表示信息數據,產生的脈沖電流通過通訊設備來完成數據的傳輸,達到通信功能。

      2計算機通信中的傳輸控制技術研究

      2.1數據傳輸技術MAC(介質訪問控制子層協議)處于OSI七層協議數據鏈路層下半部分,主要負責連接與控制物理層中的物理介質。進行數據發送時,該協議可預判發送數據可能性,若能發送則在數據上附加部分控制信息,最終將數據和控制信息按照規定方式發送至物理層;進行數據接收時,協議在判斷輸入信息內容未發生傳輸錯誤的前提下,將原先附加的控制信息去掉,將數據發送至LLC層。MAC在傳統有線局域網與當前無線局域網中均得到廣泛應用,MAC層中,數據傳輸技術分為包含總線爭用技術與令牌控制技術的主導技術和其他輔助技術,輔助技術須得配合主導技術一同使用。以下主要針對數據傳輸技術的代表性主導技術進行簡要介紹。(1)CSMA技術。作為一種總線爭用技術,CSMA(載波偵聽多路訪問)利用分散式的控制方法來使附接總線附近的各節點以競爭方式來獲取總線使用權,任意節點無特定發送時間,節點向總線發送數據具隨機性,通過偵聽檢測媒體空閑狀態來決定是否發送數據,若總線處于忙碌狀態則需延遲發送時間。該技術的優點是技術易實現、響應較及時,缺點在于數據發送效率不穩定,網絡負載一旦增大,發送時間就會增長。(2)集中式輪詢技術。輪詢技術是實現集中式數據控制的主要方法,分為傳遞輪詢與輪叫輪詢,前者主機通過向某子站發送輪詢信息來檢測該子站是否無數據傳輸或完成數據傳輸,再向其臨站發送輪詢,以此方式依次處理所有站點,控制最終回到主機;后者主機則是按照順序逐個詢問各子站是否存在數據。(3)分散式令牌技術。實現分散式控制的方法主要是令牌技術,作為最典型的令牌技術,令牌環網的基本原理是網上各主機地位平等,只有獲得令牌的主機才能發送數據。

      2.2差錯控制技術(1)ARQ方式。數據接收端一旦檢測出差錯,就會設法通知發送端對碼字進行重發,直至接收到正確的碼字為止。ARQ方式中使用檢錯碼,只可檢測出數據在傳輸過程中發生的差錯,依靠雙向通道把差錯信息反饋給發送端,并且要求發送端設有數據緩沖區來儲存已發送數據,以便對出錯數據進行重發。(2)FEC方式。與ARQ方式相比,FEC方式中數據接收端不但可以檢測出差錯,還能對二進制碼元中發生錯誤的位置進行判斷,從而對差錯加以自動、及時的糾正。該方式中使用的是糾錯碼,無需反向通道來傳輸請示重發的信息,發送端也無需設置數據緩沖區來儲存原始數據,但與ARQ相比,其編碼效率較低,且糾錯設備較為復雜。混合糾錯是將以上兩種糾錯方式進行綜合,傳輸設備較為復雜,不作重點說明。

      3計算機通信中的數據傳輸控制技術實施要點

      3.1傳輸控制軟件的功能模塊松散耦合設計數據傳輸控制服務功能模塊主要包括信道檢測與優選、協議封裝與解析、信息與安全處理等,各模塊之間的選擇和配置可根據數據傳輸具體需求來定。功能模塊松散耦合設計突破了以往設計中存在的功能模塊間相互依賴、邊界不清的緊密耦合限制,增加了各功能模塊的獨立性、可調性,并給予了系統集成人員安裝功能構建的可選擇性,使功能模塊更符合信息傳遞要求,維護人員也能準確發現問題所在,對網絡傳輸控制服務進行有針對性的修復和優化。

      3.2傳輸控制軟件的信息傳輸的跨平臺設計跨平臺設計能使程序語言、硬件和軟件設備在不同硬件架構的計算機上或不同的作業系統內實現無障礙運作。信息傳輸的跨平臺設計主要包括信息跨平臺傳輸與軟件跨平臺移植,通過網絡傳輸控制軟件來封裝不同平臺下的驅動機制與通信接口,進而形成統一的接口,以實現對數據傳輸的有效管理。

      3.3多協議透明封裝和解析采用多個相對立協議封裝和解析模塊能實現協議封裝和解析功能與業務應用軟件的有效分離,以多協議封裝和解析來使業務軟件應用更為透明,核心處理技術更為簡明。這種多協議透明封裝和解析的實現要以上層信息安全處理軟件為基礎,在交換服務中完成相應格式轉換,實現傳輸協議在傳輸服務層中的封裝和解析。

      3.4可靠與實時傳輸相結合不同類型信息在傳輸要求的側重上存在差異,指令類信息傳輸要求可靠性,態勢感知類信息傳輸注重實時性,無線信息傳輸信道的特殊性對數據傳輸質量有較大影響,為保證傳輸的可靠性和實時性,可在無線信道上采用三級緩沖機制,使信息數據依次經過發送緩沖區、等待區與回執等待區,增加人工確認。

      4結語

      傳輸技術論文范文第3篇

      光纖傳感器主要由光源、光纖與探測器3部分組成,光源發出的光耦合進光纖,經光纖進入調制區,在調治區內,外界被測參數作用于進入調區內的光信號,是其光學性質如光的強度、相位、偏振態、波長等發生變化成為被調制的信號光,再經過光纖送入光探測器而獲得被測參數,光纖傳感器中的光纖通常由纖芯、包層、樹脂涂層和塑料護套組成,纖芯和包層具有不同的折射率,樹脂涂層對光纖起保護作用,光纖按材料組成分為玻璃光纖和塑料光纖;按光纖纖芯和包層折射率的分布可分為階躍折射率型光纖和梯度折射率光纖兩種。光纖能夠約束引導光波在其內部或表面附近沿軸線方向向前傳播,具有感測和傳輸的雙重功能,是一種非常重要的智能材料。

      2.光纖傳感器的類型及特點

      光纖傳感器的類型很多,按光纖傳感器中光纖的作用可分為傳感型和傳光型兩種類型。

      傳感型光纖傳感器又稱為功能型光纖傳感器,主要使用單模光纖,光纖不僅起傳光作用,同時又是敏感元件,它利用光纖本身的傳輸特性經被測物理量作用而發生變化的特點,使光波傳導的屬性(振幅、相位、頻率、偏振)被調制。因此,這一類光纖傳感器又分為光強調制型,偏振態調制型和波長調制型等幾種。對于傳感型光纖傳感器,由于光纖本身是敏感元件,因此加長光纖的長度可以得到很高的靈敏度。

      傳光型光纖傳感器又稱非功能型光纖傳感器,它是將經過被測對象所調制的光信號輸入光纖后,通過在輸出段進行光信號處理而進行測量的。在這類傳感器中,光纖僅作為傳光元件,必須附加能夠對光纖所傳遞的光進行調治的敏感元件才能組成傳感元件。

      3.光纖傳感器的應用

      光纖傳感器的應用范圍很廣,幾乎涉及國民經濟的所有重要領域和人們的日常生活,尤其可以安全有效地在惡劣環境中使用,解決了許多行業多年來一直存在的技術難題,具有很大的市場需求。主要表現在以下幾個方面的應用:

      (1)城市建設中橋梁、大壩、油田等的干涉陀螺儀和光柵壓力傳感器的應用。光纖傳感器可預埋在混凝土、碳纖維增強塑料及各種復合材料中,用于測試應力松弛、施工應力和動荷載應力從而來評估橋梁短期、施工階段和長期營運狀態的結構性能。

      (2)在電力系統,需要測定溫度、電流等參數,如對高壓變壓器和大型電機的定子、轉子內的溫度檢測等,由于電類傳感器易受強電磁場的干擾,無法在這些場合中使用,只能用光纖傳感器。分布式光纖溫度傳感器是近幾年發展起來的一種用于實時測量空間溫度場分布的高新技術,分布式光纖溫度傳感系統不僅具有普通光纖傳感器的優點,還具有對光纖沿線各點的溫度的分布式傳感能力,利用這種特點我們可以連續實時測量光纖沿線幾公里內各點的溫度,定位精度可達米的量級,測溫精度可達1度的水平,非常適用于大范圍多點測溫的應用場合。

      (3)在石油化工系統、礦井、大型電廠等,需要檢測氧氣、碳氫化合物、CO等氣體,采用電類傳感器不但達不到要求的精度,更嚴重的是會引起安全事故。因此,研究和開發高性能的光纖氣敏傳感器,可以安全有效地實現上述檢測。

      (4)在環境監測、臨床醫學檢測、食品安全檢測等方面,由于其環境復雜,影響因素多,使用其它傳感器達不到所需要的精度,并且易受外界因素的干擾,采用光纖傳感器可以具有很強的抗干擾能力和較高的精度,可實現對上述各領域的生物量的快速、方便、準確地檢測。目前,我國水源的污染情況嚴重,臨床檢驗、食品安全檢測手段比較落后,光纖傳感器在這些領域具有極好的市場前景。

      (5)醫學及生物傳感器。醫學臨床應用光纖輻射劑量計、呼吸系統氣流傳感系統;圓錐形微型FOS測量氧氣濃度及其他生物參數;用FOS探測氫氧化物及其他化學污染物;光纖表面細胞質粒基因組共振生物傳感器;生物適應FOS系統應用于海水監測、生化技術、醫藥。

      光纖傳感器在實踐中運用到的例子舉不勝舉,這些技術都是多學科的綜合,涵蓋的知識面廣,象光纖陀螺,火花塞光纖傳感器,光纖傳感復合材料,以及利用光纖傳感器對植物葉綠素的研究等等;隨著科技的不斷進步,越來越多的光纖傳感器將面世,它將被應用到生產生活的每一個角落。

      4.光纖傳感器的技術發展方向

      光纖傳感技術經過20余年的發展也已獲得長足的進步,出現了很多實用性的產品,然而實際的需要是各種各樣的,光纖傳感技術的現狀仍然遠遠不能滿足實際需要。目前,光纖傳感器技術發展的主要方向是。

      (1)傳感器的實用化研究。即一種光纖傳感器不僅只針對一種物理量,要能夠對多種物理量進行同時測量。

      (2)提高分布式傳感器的空間分辨率、靈敏度,降低其成本,設計復雜的傳感器網絡工程。注意分布式傳感器的參數,即壓力、溫度,特別是化學參數(碳氫化合物、一些污染物、濕度、PH值等)對光纖的影響。

      (3)傳感器用特殊光纖材料和器件的研究。例如:增敏和去敏光纖、熒光光纖、電極化光纖的研究等。這些將是以后傳感器進一步發展的趨勢。

      (4)在惡劣條件下(高溫、高壓、化學腐蝕)低成本傳感器(支架、連接、安裝)的開發和應用。

      (5)新傳感機理的研究,開拓新型光纖傳感器。

      參考文獻

      [1]肖軍,王穎.光纖傳感技術的研究現狀與展望[J].機械管理開發,2006,6.

      [2]吳潔,薛玲玲.光纖傳感器的研究進展[J].激光雜志,2007,5.

      [3]吳瓊,吳善波,劉勇,袁長迎.新型光纖傳感器的設計及其特性研究[J].儀表技術與傳感器,2007,11.

      [4]李文植.光纖傳感器的發展及其應用綜述,科技創業月刊,2006,7.

      傳輸技術論文范文第4篇

      [論文摘要]大眾傳播媒介是隨著技術的發展而誕生的。人類社會的信息傳播可以追溯到遠古時期,在漫長的歲月中人們靠著表情動作來交流信息,直到15世紀才產生了技術上的真正突破——古登堡發明了印刷機。科技的進步帶來大眾傳播事業的迅猛發展,互聯網的出現給傳媒業帶來了新的發展契機。我國傳播媒介也在大力應用傳播技術,并且還面臨著如何在新的形勢下發展傳播事業的問題。

      在傳播學領域,媒介分析作為一個大的研究部分,主要包括:媒介產生發展的歷史,各種媒介的特點,媒介同人類社會變遷和文明發展史的關系,媒介文化等等。開媒介分析先河的英尼斯和麥克盧漢提出了如“媒介即訊息”等著名的觀點,使人們逐漸認識到媒介技術及其發展的巨大作用。然而,在傳播學的研究領域,傳播技術與媒介作為信息傳遞和接受的手段、載體,并非總是研究的重點。人們的注意力主要傾注在媒介所傳遞的信息內容和其產生的效果上。但近些年來,信息傳播新技術革命席卷全球的浪潮使我們看到技術在傳播中起著不可估量的作用。從一定意義上說,只有掌握了先進的傳播手段才能在激烈的競爭中立于不敗。

      一、傳播技術的產生和發展

      人類誕生之初,由于生存的需要,必須實現個體之間的交流。在漫長的時期

      內,人類只能依靠原始而古老的傳播方式如表情、動作等來相互了解。隨著勞動和生活中傳播活動的需要,人類發明了使自己徹底完成從猿到人的轉變的傳播工具——語言,然后又發明了使信息可以保存下來并使文化有效積累成為可能的傳播工具——文字。最初的文字刻在甲骨、金器上,后來又有了絹、帛,東漢的畢昇借鑒前人的經驗發明了紙。雕版印刷術,活字印刷術的發明使傳播手段先進,傳播內容豐富了起來。但是,這些還無法實現真正意義上的大規模的迅速的社會傳播,還需要有技術上的更大突破。這種突破,于15世紀中葉拉開了序幕,其標志是金屬活字印刷術和金屬活字印刷機的問世。

      德國人古登堡發明了世界上第一臺手搖金屬活字印刷機,開始了活字版印刷書籍,這說明人類在信息傳遞技術上的進步。到了19世紀初倫敦《泰晤士報》首先于公元1814年開始以蒸汽為動力的機器印報,使得知識與資訊得以普及,這是一項相當重要的進展。1833年,第一張廉價報紙紐約《太陽報》的誕生標志著真正的大眾傳播時代的到來。它采用當時最先進的滾筒印刷機,每小時印報4000份,為大量發行提供了技術保證。

      在19世紀,美國人莫爾斯發明通訊電碼,開始了有線電報時代。1870年出現電話,1895年意大利人馬可尼發明無線電,使人類的通訊技術大幅改進。第一次世界大戰后,以此技術為基礎發明了民用無線電。在此同時,電影工業在歐美亦成為另一種有力的大眾傳媒。電視是在1924年首次問世,而英國定期播放電視則始于公元1936年。電視時至今日,仍是一般人主要吸收資訊、常識,作為休閑娛樂,或作為消磨時間打發孤寂的工具。

      20世紀40年代計算機的出現為大眾傳播帶來了一次新的機遇。數字化技術的運用,通過與通訊的巧妙結合,在加工處理信息方面改變了以往直接參與的方式,是信息處理第一次超越了人類自身而實現,真正達到了信息的傳遞、存儲和加工處理的一體化和自動化,完成了人類歷史上的最先進的傳播革命,大眾傳播進入了數字化與網絡傳播的嶄新時代。

      電腦促進辦公室自動化、產業自動化及家庭自動化;鐳射科技,如磁碟機、碟片、影像傳真機及文件處理系統普及;有線電視與通訊衛星結合,使電視的功能發揮更佳;資訊社會應用許多新的傳播媒體,如電視、電話、電子郵件、電子報訊、電視傳訊、電話影視、電子會議等等,正締造全面電子化的環境。特別是互聯網的出現,整合了多種技術,它不但能統一處理文字、聲音、圖形、影像等各種符號形式,而且打破了地域界限和國家界限。信息技術的應用范圍已深入到社會的各個方面,正悄然改變著人們習以為常的傳媒環境。

      二、傳播技術在我國媒介中的應用

      近年來,我國的傳播事業迅速發展。為順應世界建設信息高速公路的潮流,

      縮小與發達國家傳媒業的差距,我國傳媒業積極采用新技術,對媒介內部從業人員進行培訓,改革舊有的觀念,使之跟上國際步伐,成為我國傳媒業的一個新趨勢。

      以《文匯報》為例,對我國媒介使用新技術的情況可窺見一斑。《文匯報》于1998年1月26日開始推出網絡版,迅速引起了公眾的興趣,當時的數據表明,每天平均有近千人上網訪問瀏覽。與該報印刷版相比,網絡版提供了優秀的檢索服務,讀者只要鍵入自己想找的指令,很快就能得到許多相關資料。此外,對于外省市不能及時看到印刷版《文匯報》的地方,網絡版更能顯示出它的優勢。網絡的應用還能使讀者的反饋瞬間傳回報社,讀者和報社的距離大大拉近,從而使報社更清楚的知道讀者的要求,把報紙辦得更有貼近性。

      此外,除了報紙媒體使用新技術外,電臺、電視臺也在大量使用。上海人民廣播電臺使用電腦工作室,實現了采訪、制作、編排、播出的電腦化運作。在“數字化儲存、數字化傳輸、電子化交換”原則的指引下,該電臺在其傳輸系統中運用光纖技術,采用一種自愈式光纖環網,將廣播節目從控制中心傳輸到發射臺,該光纖環網還可同時傳送數字化節目和模擬節目。我國電視媒體正在邁進一個數字化的時代,各電視臺都在加快數字化進程。中央電視臺采用多種電腦技術,尤其是多媒體技術,包括非線性編輯技術、虛擬技術、三維技術和動畫技術,采用機械手自動裝帶播出系統等,在節目的制作和播出上更加自動化和智能化。

      總之,我國傳媒機構使用電子技術的用途大致有以下幾點:①文字處理(寫稿、改稿、編輯、排版、電腦字幕等);②電腦激光照排;③掃描;④管理-信息存儲與資料管理;⑤建立內部網絡,進行稿件和圖片的傳輸等;⑥三維動畫;⑦非線性編輯,特技剪輯;⑧聯網查詢;⑨播出等。

      三、新形勢下我國傳媒業面臨的挑戰和對策

      首先,傳統媒體報紙、廣播、電視要加快數字化進程,實現信息處理的全面數字化。互聯網的出現打破了傳統媒體的界限,為從事跨媒體經營提供了現實的可能。在互聯網上看報紙,聽廣播,看電視已經實現,現在需要加快發展的是廣播的數字音頻技術和數字電視。

      其次,還須加快信息高速公路的建設進程,使信息傳播數字化。媒體要抓住機遇,謀求新的發展。我國政府近年來十分強調科教興國的發展戰略,人們因而十分敏感的關注科技創新事物對其他領域發展的推動作用。所以,我們要對能夠采納最新信息傳播技術持樂觀態度,抓住這個難得的發展契機。

      總而言之,傳播技術在媒介的發展中起著巨大的作用,我們決不能忽視它。但是我們也應該看到,技術在媒介的發展中并不是惟一起作用的力量,社會制度、經濟發展水平、歷史文化等都會對媒介產生影響。我們在努力創新傳播技術并應用它的時候,也要注意與其他方面的協調,使先進技術發揮出最大的能量,促使媒介不斷向前發展。

      參考文獻:

      [1]張詠華著,《媒介分析:傳播技術神話的解讀》,2002年版,復旦大學出版社

      傳輸技術論文范文第5篇

      關鍵詞:光傳送網;關鍵技術;組網;應用

      隨著傳送網絡承載的主要客戶類型由語音轉向數據的變化,基于光同步數字體系(SDH)以VC-12/VC-4為帶寬調度顆粒結合點到點波分復用(WDM)多波長傳輸的網絡結構面臨著嚴峻挑戰。首先是數據業務量大導致傳送帶寬顆粒產生的低效適配問題,如對于路由器的千兆比以太網(GE)或10GE接口,若采用目前典型結構來傳送,則需要多個VC-12/VC-4通過連續級聯或虛級聯的方式來映射,適配和傳送效率顯著降低。其次是WDM網絡的維護管理問題。目前的WDM網絡主要檢測SDH幀結構的B1字節和J0字節等開銷[1],對于信號在WDM網絡傳輸中的性能和告警等功能檢測較弱。最后是WDM網絡的組網能力問題。WDM網絡目前僅僅支持點到點或者環網拓撲,在光域基本沒有或支持有限的組網能力。因此,針對這些需求,國際電聯(ITU-T)基于光域數字處理尚不成熟的技術現狀,從1998年左右開始提出了基于大顆粒帶寬進行組網、調度和傳送的新型技術——光傳送網(OTN)的概念,同時持續對于相關標準進行了規范,截至到目前已經規范了網絡結構[2]、網絡接口[3]、設備功能接口[4]、管理模型[5]和抖動[6]等。OTN技術是綜合了SDH和WDM優勢并考慮了大顆粒傳送和端到端維護等新需求而提出并實現的技術,相關規范同時涵蓋了未來全光網的范疇,是光網絡極有發展潛力的新型技術,將在后續的網絡中逐漸引入與應用。

      1光傳送網的技術特征

      OTN技術繼承了SDH和WDM技術的諸多優勢功能,同時也增加了新的技術特征。

      (1)多種客戶信號封裝和透明傳輸

      基于ITU-TG.709的OTN幀結構可以支持多種客戶信號的映射,如SDH、異步轉發模式(ATM)、以太網等。目前對于SDH和ATM可實現標準封裝和透明傳送,但對于以太網則支持有所差異。例如對于GE客戶,OTN尚未規范具體的映射方式,各設備廠家采用不同的方式實現GE客戶透傳,導致客戶業務無法互通,同時由于10GE接口的規范完成晚于OTN標準框架規范,OTN對于10GE的透明傳送程度有所差異,目前ITU-T提出了2種標準方式和3種非標準方式[7],解決了點到點透明傳送10GE的問題。

      (2)大顆粒帶寬復用、交叉和配置

      OTN目前定義的電域的帶寬顆粒為光通路數據單元(ODUk,k=1,2,3),即ODU1(2.5Gb/s)、ODU2(10Gb/s)以及ODU3(40Gb/s),光域的帶寬顆粒為波長,相對于SDH的VC-12/VC-4的處理顆粒,OTN復用、交叉和配置的顆粒明顯要大很多,對高帶寬客戶業務的適配和傳送效率顯著提升。

      (3)強大的開銷和維護管理能力

      OTN提供了和SDH類似的開銷管理能力,OTN光通路(OCh)層的OTN幀結構大大增強了OCh層的數字監視能力。另外OTN還提供6層嵌套串聯連接監視(TCM)功能,這樣使得OTN組網時,端到端和多個分段同時進行性能監視成為可能。

      (4)增強了組網和保護能力

      通過OTN幀結構和多維度可重構光分插復用器(ROADM)[8]的引入,大大增強了光傳送網的組網能力,改變了目前WDM主要點到點提供傳送帶寬的現狀。而采用前向糾錯(FEC)技術,顯著增加了光層傳輸的距離(如采用標準G.709的FEC編碼,光信噪比(OSNR)容限可降低5dB左右,采用其他增強型FEC,光信噪比(OSNR)容限降低等多[9])。另外,OTN將提供更為靈活的基于電層和光層的業務保護功能,如基于ODUk層的光子網連接保護(SNCP)和共享環網保護、基于光層的光通道或復用段保護等,但目前共享環網技術尚未標準化。

      (5)OTN支持多種設備類型

      鑒于OTN技術的特點,目前OTN支持4種基本的設備類型[10],即OTN終端型設備、基于電交叉功能的OTN設備、基于光交叉功能的OTN設備和基于光電混合交叉功能的OTN設備。目前大多數廠家支持的OTN產品主要以OTN終端設備和基于光交叉功能的OTN設備為主,基于電交叉功能和光電混合交叉功能的OTN設備也有部分提供,在具體應用時可根據實際需求綜合考慮選擇哪種或哪幾種OTN設備。

      (6)OTN目前不支持小帶寬粒度

      由于OTN技術最初的目的主要是考慮處理2.5Gb/s以及以上帶寬粒度的客戶信號,因此并沒有考慮低于2.5Gb/s的客戶信號。隨著OTN客戶需求的發展變化,基于更低帶寬顆粒(如1.25Gb/s量級及以下)的需求出現,ITU-T也加大研究力度,目前正在根據各成員提案討論如何規范具體的帶寬粒度規格和參數,同時研究基于多種較小帶寬顆粒的通用映射規程(GMP)。

      2OTN關鍵技術及實現

      OTN技術包括很多關鍵技術,主要有接口技術、組網技術、保護技術、傳輸技術、智能控制技術和管理功能等等。

      2.1接口技術

      OTN的接口技術主要包括物理接口和邏輯接口兩部分,其中邏輯接口是最關鍵的部分。對于物理接口而言,ITU-TG.959.1已規范了相應接口參數,而對于邏輯接口,ITU-TG.709規范了相應的不同電域子層面的開銷字節,如光通路傳送單元(OTUk)、ODUk(含光通路凈荷單元(OPUk))等,以及光域的管理維護信號。其中OTUk相當于段層,ODUk相當于通道層,而ODUk又包含了可獨立設置的6個串聯連接監視開銷。

      在目前的OTN設備實現中,基于G.709的幀,電層的開銷支持程度較好,一般均可實現大部分告警和性能等開銷的查詢與特定開銷(含映射方式)的設置,而光域的維護信號由于具體實現方式未規范,目前支持程度較低。

      2.2組網技術

      OTN技術提供了OTN接口、ODUk交叉和波長交叉等功能,具備了在電域、光域或電域光域聯合進行組網的能力,網絡拓撲可為點到點、環網和網狀網等。目前OTN設備典型的實現是在電域采用ODU1交叉或者光域采用波長交叉來實現,其中不同廠家當中采用電域或電域光域聯合方式實現的較少,而采用光域方式實現的較多。目前電域的交叉容量較低,典型為320Gb/s量級,光域的線路方向(維度)可支持到2~8個,單方向一般支持40×10Gb/s的傳送容量,后續可能出現更大容量的OTN設備。

      2.3保護恢復技術

      OTN在電域和光域可支持不同的保護恢復技術。電域支持基于ODUk的子網連接保護(SNCP)、環網共享保護等;光域支持光通道1+1保護(含基于子波長的1+1保護)、光通道共享保護和光復用段1+1保護等。另外基于控制平面的保護與恢復也同樣適用于OTN網絡。目前OTN設備的實現是電域支持SNCP和私有的環網共享保護,而光域主要支持光通道1+1保護(含基于子波長的1+1保護)、光通道共享保護等。另外,部分廠家的OTN設備在光域支持基于光通道的控制平面,也支持一定程度的保護與恢復功能。隨著OTN技術的發展與逐步規模應用,以光通道和ODUk為調度顆粒基于控制平面的保護恢復技術將會逐漸完善實現和應用。2.4傳輸技術

      大容量、長距離的傳輸能力是光傳送網絡的基本特征,任何新型的光傳送網絡都必然不斷采用革新的傳輸技術提升相應的傳輸能力,OTN技術也不例外。OTN除了采用帶外的FEC技術顯著地提升了傳輸距離之外,而目前已采用的新型調制編碼(含強度調制、相位調制、強度和相位結合調制、調制結合偏振復用等)結合色散(含色度色散和偏振模色散)光域可調補償、電域均衡等技術顯著增加了OTN網絡在高速(如40Gb/s及以上)大容量配置下的組網距離。

      2.5智能控制技術

      OTN基于控制平面的智能控制技術包含和基于SDH的自動交換光網絡(ASON)類似的要求,包括自動發現、路由要求、信令要求、鏈路管理要求和保護恢復技術等。基于SDH的ASON相關的協議規范一般可應用到OTN網絡。與基于SDH的ASON網絡的關鍵差異是,智能功能調度和處理的帶寬可以不同,前者為VC-4,后者為ODUk和波長。

      目前的OTN設備部分廠家已實現了基于波長的部分智能控制功能,相關的功能正在進一步的發展完善當中。后續更多的OTN設備將會進一步支持更多的智能控制功能,如基于ODUk顆粒等。

      2.6管理功能

      OTN的管理除了滿足通用要求的配置、故障、性能和安全等功能之外,還需滿足OTN技術的特定要求,如基于OTN的開銷管理、基于ODUk/波長的調度與管理、基于波長的功率均衡與控制管理、波長的沖突管理、基于OTN的控制平面管理等等。目前的OTN網絡管理系統一般都基于原有傳統WDM網管系統升級,除了常規的管理功能之外,可支持OTN相應的基本管理功能。

      3光傳送網應用分析

      隨著傳送網客戶信號帶寬需求的進一步驅動、OTN技術的逐漸發展和OTN設備功能實現程度的顯著推進,OTN技術如何應用日益成為業界探討的焦點,也即何時(什么時候)、何地(什么網絡層面)、以什么方式(選擇什么功能)引入OTN進行組網以及實際應用時存在哪些障礙或缺陷。因此,文章主要從OTN應用時機、OTN應用網絡層面、OTN應用功能以及OTN應用關聯問題等角度進行分析。3.1應用時機探討

      OTN是否可以很好地引入應用主要應從傳送網客戶信號的驅動、OTN技術的完善程度、OTN設備的實現程度以及網絡運維人員的OTN技術認知程度等多個角度考慮。

      首先,目前傳送網客戶信號主要為IP/以太網,而IP/以太網的高速發展導致大帶寬粒度傳送與調度的需求增長非常迅速,基于VC-12/VC-4的帶寬顆粒的適配與調度方式顯然滿足不了傳送網客戶信號對于大顆粒帶寬的傳送與調度需求。其次,從OTN技術的完善程度來看,雖然目前OTN標準系列還在進一步修訂和討論(如規范ODU0和ODU4顆粒,統一基于超頻方式工作的ODU1e、ODU2e容器等等),而OTN的主要標準框架和功能要求已由ITU-T幾年前定稿,即使后續部分內容有所更新,但目前的規范內容至少必須要繼承和兼容,因此,對于OTN技術目前可以說是基本完善。第三,對于OTN設備的實現程度來看,目前的OTN設備已經基本支持了OTN技術的主要特征,如多速率映射與透明傳送、大顆粒帶寬的調度與處理、OTN幀結構的開銷實現與處理、OTN的組網與保護等,同時實現了對于這些OTN技術特征的管理。因此,從設備實現上而言,OTN設備已經具備了初步應用的功能特征,但具體應用時要根據多種需求綜合選擇OTN設備相應功能。最后,網絡運維人員對于OTN技術認知過程和其他任何新技術一樣,都需要一個逐漸了解、深入和掌握的過程。因此,網絡運維人員初期對于OTN技術的不熟悉并不是OTN引入與應用的障礙,而應該是OTN應用時所必須要準備的前提條件之一。

      因此,從傳送網客戶信號的驅動、OTN技術的完善程度、OTN設備的實現程度等方面來看,OTN技術的引入與應用目前應該具備了基本的條件,可在綜合考慮其他非技術因素的基礎上逐步引入與應用OTN技術,以增強傳送網絡的傳送能力與效率,適應客戶信號的高速、動態發展。

      3.2應用層面分析

      由于光傳送網絡的范疇較大,包括城域光傳送網(含核心層、匯聚層和接入層)、干線傳送網(省內干線和省級干線)等多個層面。不同網絡層面的特點不同,因而是否可以引入OTN技術的結論對于不同網絡層面并不完全一致。

      對于城域光傳送網而言,匯聚與接入層主要是承載的是匯聚型客戶業務,客戶信號的帶寬粒度較小,基于ODUk調度的業務可能性較小,而且OTN目前暫未標準化ODU1(2.5Gb/s)以下的帶寬粒度,因此,目前的OTN技術在城域匯聚與接入層引入與應用的優勢并不明顯。

      對于城域傳送核心層和干線傳送網絡而言,客戶業務的特點主要為分布型,客戶信號的帶寬粒度較大,基于ODUk和波長調度的需求和優勢明顯,OTN技術特點應用的優勢比較適宜發揮。

      因此,目前OTN技術的引入與應用主要應側重于城域核心層和干線網絡。

      3.3應用功能選擇

      OTN技術的典型應用功能目前可分為3種:OTN接口、ODUk交叉和波長交叉3種。綜合考慮客戶業務需求、OTN技術完善程度、OTN設備實現程度等多種因素,應在不同的網絡層面應選擇不同的OTN功能。

      首先,在城域傳送網核心層層面,由于節點調度與處理要求中等,網絡規模較小但調度需求較大,目前一般可根據實際網絡的典型需求選擇ODUk交叉和波長交叉或者ODUk和波長混合交叉功能,同時提供對于OTN接口功能的支持;后續可根據OTN設備的實現程度選擇新型功能。第二,在省內干線層面,由于節點調度與處理要求較大,網絡規模較大,調度需求較大,目前一般可根據實際網絡的典型需求選擇波長交叉或者僅選擇OTN接口功能;后續可根據OTN設備的能力的提升和客戶業務需求等選擇ODUk交叉、波長交叉,或者ODUk和波長混合交叉功能。第三,在省級干線層面,由于節點調度與處理要求很大,網絡規模大,調度需求一般,目前一般可根據實際網絡的典型需求選擇OTN接口功能,特殊需求可局部選擇波長交叉功能;后續可根據OTN設備的能力提升和客戶業務需求等選擇ODUk交叉、波長交叉,或者ODUk和波長混合交叉功能。

      3.4應用關聯問題

      實際引入OTN技術組網時,最典型的關聯問題是現有網絡如何升級、現有網絡與OTN怎么互通以及后續的OTN如何演進等問題。

      由于現有WDM網絡的彩色接口一般都提供了基于G.709的OTN接口功能,原則上可考慮直接升級或啟動OTN接口功能。由于現有WDM設備的OTN接口的支持程度差異較大,而且涉及到現網運營、維護、技術的更新和成本等因素,如何升級為完全支持G.709接口的OTN設備,是個綜合多種因素需要深入分析的問題,不同的場景應選擇不同的解決方案。

      對于互通問題,由于目前的WDM網絡支持的G.709接口并不一定完善,因此,新建的OTN網絡與已有WDM或者SDH網絡互通時,應優先選擇客戶側接口(如SDH/以太網等)進行互通,待OTN網絡規模逐漸擴大以后,OTN不同子網之間可采用基于OTUk的域間接口互通,逐漸實現端到端的維護與管理。

      關于OTN引入和應用后的后續技術演進,應在積累前期運維經驗的基礎上擴大OTN網絡規模的同時,從客戶業務需求、OTN技術發展和OTN設備實現程度等多方面緊密跟蹤相關進展,以便適時適度地引入更多的OTN新功能,最終實現光傳送網絡范圍內真正意義上端到端靈活的調度、維護與管理,使OTN的應用網絡層面覆蓋到城域傳送網核心、接入與匯聚層以及干線網絡。

      4結束語

      OTN作為新型的光傳送網絡技術,繼承了SDH和WDM技術的諸多優勢,同時拓展了新型的大顆粒調度和傳送、多級的TCM等新型功能,是下一代光傳送網的主流技術。從傳送網客戶信號的驅動、OTN技術的完善程度、OTN設備的實現程度等多個角度考慮,OTN已具備了引入與應用的基本條件,而具體的應用應著重考慮OTN應用時機、OTN應用網絡層面、OTN應用功能以及OTN應用關聯問題等方面。

      5參考文獻

      [1]YD/T1383—2005.波分復用(WDM)網元管理系統技術要求[S].2005.

      [2]ITU-TG.872.Architectureofopticaltransportnetworks[S].2001.

      [3]ITU-TG.709.Interfacesfortheopticaltransportnetwork(OTN)[S].2003.

      [4]ITU-TG.798.Characteristicsofopticaltransportnetworkhierarchyequipmentfunctionalblocks[S].2004.

      [5]ITU-TG.874.Managementaspectsoftheopticaltransportnetworkelement[S].2004.

      [6]ITU-TG.8251.Thecontrolofjitterandwanderwithinthe?opticaltransportnetwork(OTN)[S].2008.

      [7]ITU-TG.sup43.TransportofIEEE10Gbase-Rinopticaltransportnetworks(OTN)[S].2008.

      [8]ROADMarchitecturesandtechnologiesforagileopticalnetworks[EB/OL].[2008-05-10]./downloads/ROADM_Overview.pdf.

      [9]MizuochiT.Recentprogressinforwarderrorcorrectionanditsinterplaywithtransmissionimpairments[J].IEEEJournalofSelectedTopicsQuantum

      国产啪亚洲国产精品无码| 中文字幕乱码亚洲无线三区| 亚洲国产精品99久久久久久| 亚洲国产成人久久精品app| 亚洲无删减国产精品一区| 亚洲国产精品乱码一区二区| 亚洲欧洲一区二区三区| 在线观看亚洲精品专区| 在线精品亚洲一区二区| 亚洲成_人网站图片| 亚洲香蕉在线观看| youjizz亚洲| 亚洲 欧洲 视频 伦小说| 亚洲国产精品一区二区三区在线观看| 亚洲国产精品久久久久秋霞影院 | 久久久亚洲欧洲日产国码农村| 久久亚洲国产午夜精品理论片| 亚洲日韩欧洲乱码AV夜夜摸| 亚洲日韩v无码中文字幕| 亚洲精品无码永久中文字幕| 亚洲色婷婷综合久久| 亚洲码国产精品高潮在线| 国产亚洲精AA在线观看SEE| 亚洲国产精品无码av| 亚洲综合成人网在线观看| 亚洲国产高清视频| 亚洲精品福利在线观看| 亚洲制服丝袜一区二区三区| 亚洲午夜在线播放| 亚洲欧美aⅴ在线资源| 色欲aⅴ亚洲情无码AV| 亚洲国产精品综合久久网络| 亚洲无码视频在线| 亚洲国产精品嫩草影院在线观看| 亚洲av日韩av激情亚洲| 亚洲美女中文字幕| 亚洲免费福利在线视频| 久久久久久久久无码精品亚洲日韩| 午夜亚洲国产成人不卡在线| 久久久久亚洲av成人无码电影 | 亚洲视频在线免费播放|