前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇高中數(shù)學(xué)思維怎么培養(yǎng)范文,相信會為您的寫作帶來幫助,發(fā)現(xiàn)更多的寫作思路和靈感。
關(guān)鍵詞:高中數(shù)學(xué) 數(shù)學(xué)思維
思維是人腦對客觀現(xiàn)實的概括和間接的反映,反映的是事物的本質(zhì)及內(nèi)部的規(guī)律性。所謂高中學(xué)生數(shù)學(xué)思維,是指學(xué)生在對高中數(shù)學(xué)感性認識的基礎(chǔ)上,運用比較、分析、綜合、歸納、演繹等思維的基本方法,理解并掌握高中數(shù)學(xué)內(nèi)容而且能對具體的數(shù)學(xué)問題進行推論與判斷,從而獲得對高中數(shù)學(xué)知識本質(zhì)和規(guī)律的認識能力。高中數(shù)學(xué)的數(shù)學(xué)思維雖然并非總等于解題,但我們可以這樣講,高中學(xué)生的數(shù)學(xué)思維的形成是建立在對高中數(shù)學(xué)基本概念、定理、公式理解的基礎(chǔ)上的;發(fā)展高中學(xué)生數(shù)學(xué)思維最有效的方法是通過解決問題來實現(xiàn)的。
然而,在學(xué)習(xí)高中數(shù)學(xué)過程中,我們經(jīng)常聽到學(xué)生反映上課聽老師講課,聽得很“明白”,但到自己解題時,總感到困難重重,無從入手;有時,在課堂上待我們把某一問題分析完時,常常看到學(xué)生拍腦袋:“唉,我怎么會想不到這樣做呢?”事實上,有不少問題的解答,同學(xué)發(fā)生困難,并不是因為這些問題的解答太難以致學(xué)生無法解決,而是其思維形式或結(jié)果與具體問題的解決存在著差異,也就是說,這時候,學(xué)生的數(shù)學(xué)思維存在著障礙。這種思維障礙,有的是來自于我們教學(xué)中的疏漏,而更多的則來自于學(xué)生自身,來自于學(xué)生中存在的非科學(xué)的知識結(jié)構(gòu)和思維模式。因此,研究高中學(xué)生的數(shù)學(xué)思維障礙對于增強高中學(xué)生數(shù)學(xué)教學(xué)的針對性和有效性有十分重要的意義。
一、高中學(xué)生數(shù)學(xué)思維障礙的形成原因
新舊知識在學(xué)生的頭腦中發(fā)生積極的相互作用和聯(lián)系,導(dǎo)致原有知識結(jié)構(gòu)的不斷分化和重新組合,使學(xué)生獲得新知識。但是這個過程并非總是一次性成功的。一方面,如果在教學(xué)過程中,教師不顧學(xué)生的實際情況(即基礎(chǔ))或不能覺察到學(xué)生的思維困難之處,而是任由教師按自己的思路或知識邏輯進行灌輸式教學(xué),則到學(xué)生自己去解決問題時往往會感到無所適從;另一方面,當(dāng)新的知識與學(xué)生原有的知識結(jié)構(gòu)不相符時或者新舊知識中間缺乏必要的“媒介點”時,這些新知識就會被排斥或經(jīng)“校正”后吸收。因此,如果教師的教學(xué)脫離學(xué)生的實際;如果學(xué)生在學(xué)習(xí)高中數(shù)學(xué)過程中,其新舊數(shù)學(xué)知識不能順利“交接”,那么這時就勢必會造成學(xué)生對所學(xué)知識認知上的不足、理解上的偏頗,從而在解決具體問題時就會產(chǎn)生思維障礙,影響學(xué)生解題能力的提高。
二、高中數(shù)學(xué)思維障礙的具體表現(xiàn)
由于高中數(shù)學(xué)思維障礙產(chǎn)生的原因不盡相同,作為主體的學(xué)生的思維習(xí)慣、方法也都有所區(qū)別,所以,高中數(shù)學(xué)思維障礙的表現(xiàn)各異,具體的可以概括為:一是數(shù)學(xué)思維的膚淺性。由于學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,對一些數(shù)學(xué)概念或數(shù)學(xué)原理的發(fā)生、發(fā)展過程沒有深刻的去理解,一般的學(xué)生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無法擺脫局部事實的片面性而把握事物的本質(zhì)。二是數(shù)學(xué)思維的差異性。由于每個學(xué)生的數(shù)學(xué)基礎(chǔ)不盡相同,其思維方式也各有特點,因此不同的學(xué)生對于同一數(shù)學(xué)問題的認識、感受也不會完全相同,從而導(dǎo)致學(xué)生對數(shù)學(xué)知識理解的偏頗。這樣,學(xué)生在解決數(shù)學(xué)問題時,一方面不大注意挖掘所研究問題中的隱含條件,抓不住問題中的確定條件,影響問題的解決。三是數(shù)學(xué)思維定勢的消極性。由于高中學(xué)生已經(jīng)有相當(dāng)豐富的解題經(jīng)驗,因此,有些學(xué)生往往對自己的某些想法深信不疑,很難使其放棄一些陳舊的解題經(jīng)驗,思維陷入僵化狀態(tài),不能根據(jù)新的問題的特點作出靈活的反應(yīng),常常阻抑更合理有效的思維甚至造成歪曲的認識。
三、高中學(xué)生數(shù)學(xué)思維障礙的突破
1、在高中數(shù)學(xué)起始教學(xué)中
教師必須著重了解和掌握學(xué)生的基礎(chǔ)知識狀況,尤其在講解新知識時,要嚴格遵循學(xué)生認知發(fā)展的階段性特點,照顧到學(xué)生認知水平的個性差異,強調(diào)學(xué)生的主體意識,發(fā)展學(xué)生的主動精神,培養(yǎng)學(xué)生良好的意志品質(zhì);同時要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。興趣是最好的老師,學(xué)生對數(shù)學(xué)學(xué)習(xí)有了興趣,才能產(chǎn)生數(shù)學(xué)思維的興奮灶,也就是更大程度地預(yù)防學(xué)生思維障礙的產(chǎn)生。教師可以幫助學(xué)生進一步明確學(xué)習(xí)的目的性,針對不同學(xué)生的實際情況,因材施教,分別給他們提出新的更高的奮斗目標,使學(xué)生有一種“跳一跳,就能摸到桃”的感覺,提高學(xué)生學(xué)好高中數(shù)學(xué)的信心。
2、重視數(shù)學(xué)思想方法的教學(xué),指導(dǎo)學(xué)生提高數(shù)學(xué)意識
數(shù)學(xué)意識是學(xué)生在解決數(shù)學(xué)問題時對自身行為的選擇,它既不是對基礎(chǔ)知識的具體應(yīng)用,也不是對應(yīng)用能力的評價,數(shù)學(xué)意識是指學(xué)生在面對數(shù)學(xué)問題時該做什么及怎么做,至于做得好壞,當(dāng)屬技能問題,有時一些技能問題不是學(xué)生不懂,而是不知怎么做才合理,有的學(xué)生面對數(shù)學(xué)問題,首先想到的是套那個公式,模仿那道做過的題目求解,對沒見過或背景稍微陌生一點的題型便無從下手,無法解決,這是數(shù)學(xué)意識落后的表現(xiàn)。
3、誘導(dǎo)學(xué)生暴露其原有的思維框架,消除思維定勢的消極作用
在高中數(shù)學(xué)教學(xué)中,我們不僅僅是傳授數(shù)學(xué)知識,培養(yǎng)學(xué)生的思維能力也應(yīng)是我們的教學(xué)活動中相當(dāng)重要的一部分。而誘導(dǎo)學(xué)生暴露其原有的思維框架,包括結(jié)論、例證、推論等對于突破學(xué)生的數(shù)學(xué)思維障礙會起到極其重要的作用。使學(xué)生暴露觀點的方法很多。例如,教師可以與學(xué)生談心的方法,可以用精心設(shè)計的診斷性題目,事先了解學(xué)生可能產(chǎn)生的錯誤想法,要運用延遲評價的原則,即待所有學(xué)生的觀點充分暴露后,再提出矛盾,以免暴露不完全,解決不徹底。有時也可以設(shè)置疑難,展開討論,疑難問題引人深思,選擇學(xué)生不易理解的概念,不能正確運用的知識或容易混淆的問題讓學(xué)生討論,從錯誤中引出正確的結(jié)論,這樣學(xué)生的印象特別深刻。而且通過暴露學(xué)生的思維過程,能消除消極的思維定勢在解題中的影響。
當(dāng)前,素質(zhì)教育已經(jīng)向我們傳統(tǒng)的高中數(shù)學(xué)教學(xué)提出了更高的要求。但只要我們堅持以學(xué)生為主體,以培養(yǎng)學(xué)生的思維發(fā)展為己任,則勢必會提高高中學(xué)生數(shù)學(xué)教學(xué)質(zhì)量,擺脫題海戰(zhàn)術(shù),真正減輕學(xué)生學(xué)習(xí)數(shù)學(xué)的負擔(dān),從而為提高高中學(xué)生的整體素質(zhì)作出我們數(shù)學(xué)教師應(yīng)有的貢獻。
參考文獻
[1] 任樟輝《數(shù)學(xué)思維論》(1999年9月版)
關(guān)鍵詞:數(shù)學(xué)思維;數(shù)學(xué)思維障礙
在學(xué)習(xí)高中數(shù)學(xué)過程中,經(jīng)常聽到學(xué)生反映上課聽老師講課,聽得很“明白”,但到自己解題時,總感到困難重重,無從入手;有時,在課堂上待我們把某一問題分析完時,常常看到學(xué)生拍腦袋:“唉,我怎么會想不到這樣做呢?”事實上,有不少問題的解答,同學(xué)發(fā)生困難,并不是因為這些問題的解答太難以致學(xué)生無法解決,而是其思維形式或結(jié)果與具體問題的解決存在著差異,也就是說,這時候,學(xué)生的數(shù)學(xué)思維存在著障礙。這種思維障礙,有的是來自于教學(xué)中的疏漏,而更多的則來自于學(xué)生自身,來自于學(xué)生中存在的非科學(xué)的知識結(jié)構(gòu)和思維模式。因此,研究高中數(shù)學(xué)思維障礙對于增強高中學(xué)生數(shù)學(xué)教學(xué)的針對性和實效性有十分重要的意義。
一、高中數(shù)學(xué)思維障礙的成因
根據(jù)布魯納的認識發(fā)展理論,學(xué)習(xí)本身是一種認識過程,在這個課程中,個體的學(xué)是要通過已知的內(nèi)部認知結(jié)構(gòu),對“從外到內(nèi)”的輸入信息進行整理加工,以一種易于掌握的形式加以儲存,也就是說學(xué)生能從原有的知識結(jié)構(gòu)中提取最有效的舊知識來吸納新知識,即找到新舊知識的“媒介點”,這樣,新舊知識在學(xué)生的頭腦中發(fā)生積極的相互作用和聯(lián)系,導(dǎo)致原有知識結(jié)構(gòu)的不斷分化和重新組合,使學(xué)生獲得新知識。但是這個過程并非總是一次性成功的。一方面,如果在教學(xué)過程中,教師不顧學(xué)生的實際情況(即基礎(chǔ))或不能覺察到學(xué)生的思維困難之處,而是任由教師按自己的思路或知識邏輯進行灌輸式教學(xué),則到學(xué)生自己去解決問題時往往會感到無所適從;另一方面,當(dāng)新的知識與學(xué)生原有的知識結(jié)構(gòu)不相符時或者新舊知識中間缺乏必要的"媒介點"時,這些新知識就會被排斥或經(jīng)“校正”后吸收。 因此,如果教師的教學(xué)脫離學(xué)生的實際;如果學(xué)生在學(xué)習(xí)高中數(shù)學(xué)過程中,其新舊數(shù)學(xué)知識不能順利“交接”,那么這時就勢必會造成學(xué)生對所學(xué)知識認知上的不足、理解上的偏頗,從而在解決具體問題時就會產(chǎn)生思維障礙,影響學(xué)生解題能力的提高
二、高中數(shù)學(xué)思維障礙的表現(xiàn)
由于高中數(shù)學(xué)思維障礙產(chǎn)生的原因不盡相同,作為主體的學(xué)生的思維習(xí)慣、方法也都有所區(qū)別,所以,高中數(shù)學(xué)思維障礙的表現(xiàn)各異,由于學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,對一些數(shù)學(xué)概念或數(shù)學(xué)原理的發(fā)生、發(fā)展過程沒有深刻的去理解,一般的學(xué)生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無法擺脫局部事實的片面性而把握事物的本質(zhì)。由此而產(chǎn)生數(shù)學(xué)思維的障礙。由此可見,學(xué)生數(shù)學(xué)思維障礙的形成,不僅不利于學(xué)生數(shù)學(xué)思維的進一步發(fā)展,而且也不利于學(xué)生解決數(shù)學(xué)問題能力的提高。所以,在平時的數(shù)學(xué)教學(xué)中注重突破學(xué)生的數(shù)學(xué)思維障礙就顯得尤為重要。
三、高中數(shù)學(xué)思維障礙的克服
1.在高中數(shù)學(xué)起始教學(xué)中,教師必須著重了解和掌握學(xué)生的基礎(chǔ)知識狀況,尤其在講解新知識時,要嚴格遵循學(xué)生認知發(fā)展的階段性特點,照顧到學(xué)生認知水平的個性差異,強調(diào)學(xué)生的主體意識,發(fā)展學(xué)生的主動精神,培養(yǎng)學(xué)生良好的意志品質(zhì);同時要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。興趣是最好的老師,學(xué)生對數(shù)學(xué)學(xué)習(xí)有了興趣,才能產(chǎn)生數(shù)學(xué)思維的興奮灶,也就是更大程度地預(yù)防學(xué)生思維障礙的產(chǎn)生。教師可以幫助學(xué)生進一步明確學(xué)習(xí)的目的性,針對不同學(xué)生的實際情況,因材施教,分別給他們提出新的更高的奮斗目標,使學(xué)生有一種"跳一跳,就能摸到桃"的感覺,提高學(xué)生學(xué)好高中數(shù)學(xué)的信心。
2.重視數(shù)學(xué)思想方法的教學(xué),指導(dǎo)學(xué)生提高數(shù)學(xué)意識。數(shù)學(xué)意識是學(xué)生在解決數(shù)學(xué)問題時對自身行為的選擇,它既不是對基礎(chǔ)知識的具體應(yīng)用,也不是對應(yīng)用能力的評價,數(shù)學(xué)意識是指學(xué)生在面對數(shù)學(xué)問題時該做什么及怎么做,至于做得好壞,當(dāng)屬技能問題,有時一些技能問題不是學(xué)生不懂,而是不知怎么做才合理,有的學(xué)生面對數(shù)學(xué)問題,首先想到的是套那個公式,模仿那道做過的題目求解,對沒見過或背景稍微陌生一點的題型便無從下手,無法解決,這是數(shù)學(xué)意識落后的表現(xiàn)。數(shù)學(xué)教學(xué)中,在強調(diào)基礎(chǔ)知識的準確性、規(guī)范性、熟練程度的同時,我們應(yīng)該加強數(shù)學(xué)意識教學(xué),指導(dǎo)學(xué)生以意識帶動雙基,將數(shù)學(xué)意識滲透到具體問題之中。如:設(shè)x2+y2=25,求u= 的取值范圍。 若采用常規(guī)的解題思路,μ的取值范圍不大容易求,但適當(dāng)對u進行變形: 轉(zhuǎn)而構(gòu)造幾何圖形容易求得u∈[6,6 ],這里對u的適當(dāng)變形實際上是數(shù)學(xué)的轉(zhuǎn)換意識在起作用。因此,在數(shù)學(xué)教學(xué)中只有加強數(shù)學(xué)意識的教學(xué),如“因果轉(zhuǎn)化意識”“類比轉(zhuǎn)化意識”等的教學(xué),才能使學(xué)生面對數(shù)學(xué)問題得心應(yīng)手、從容作答。所以,提高學(xué)生的數(shù)學(xué)意識是突破學(xué)生數(shù)學(xué)思維障礙的一個重要環(huán)節(jié)。
3.誘導(dǎo)學(xué)生暴露其原有的思維框架,消除思維定勢的消極作用。在高中數(shù)學(xué)教學(xué)中,我們不僅僅是傳授數(shù)學(xué)知識,培養(yǎng)學(xué)生的思維能力也應(yīng)是我們的教學(xué)活動中相當(dāng)重要的一部分。而誘導(dǎo)學(xué)生暴露其原有的思維框架,包括結(jié)論、例證、推論等對于突破學(xué)生的數(shù)學(xué)思維障礙會起到極其重要的作用。
【關(guān)鍵詞】數(shù)學(xué)思維、數(shù)學(xué)思維障礙
思維是人腦對客觀現(xiàn)實的概括和間接的反映,反映的是事物的本質(zhì)及內(nèi)部的規(guī)律性。所謂高中學(xué)生數(shù)學(xué)思維,是指學(xué)生在對高中數(shù)學(xué)感性認識的基礎(chǔ)上,運用比較、分析、綜合、歸納、演繹等思維的基本方法,理解并掌握高中數(shù)學(xué)內(nèi)容而且能對具體的數(shù)學(xué)問題進行推論與判斷,從而獲得對高中數(shù)學(xué)知識本質(zhì)和規(guī)律的認識能力。因此,研究高中學(xué)生的數(shù)學(xué)思維障礙對于增強高中學(xué)生數(shù)學(xué)教學(xué)的針對性和實效性有十分重要的意義。
一、高中學(xué)生數(shù)學(xué)思維障礙的形成原因
根據(jù)布魯納的認識發(fā)展理論,學(xué)習(xí)本身是一種認識過程,在這個課程中,個體的學(xué)是要通過已知的內(nèi)部認知結(jié)構(gòu),對“從外到內(nèi)”的輸入信息進行整理加工,以一種易于掌握的形式加以儲存,也就是說學(xué)生能從原有的知識結(jié)構(gòu)中提取最有效的舊知識來吸納新知識,即找到新舊知識的“媒介點”,這樣,新舊知識在學(xué)生的頭腦中發(fā)生積極的相互作用和聯(lián)系,導(dǎo)致原有知識結(jié)構(gòu)的不斷分化和重新組合,使學(xué)生獲得新知識。但是這個過程并非總是一次性成功的。一方面,如果在教學(xué)過程中,教師不顧學(xué)生的實際情況(即基礎(chǔ))或不能覺察到學(xué)生的思維困難之處,而是任由教師按自己的思路或知識邏輯進行灌輸式教學(xué),則到學(xué)生自己去解決問題時往往會感到無所適從;另一方面,當(dāng)新的知識與學(xué)生原有的知識結(jié)構(gòu)不相符時或者新舊知識中間缺乏必要的“媒介點”時,這些新知識就會被排斥或經(jīng)“校正”后吸收。因此,如果教師的教學(xué)脫離學(xué)生的實際;如果學(xué)生在學(xué)習(xí)高中數(shù)學(xué)過程中,其新舊數(shù)學(xué)知識不能順利“交接”,那么這時就勢必會造成學(xué)生對所學(xué)知識認知上的不足、理解上的偏頗,從而在解決具體問題時就會產(chǎn)生思維障礙,影響學(xué)生解題能力的提高。
二、高中數(shù)學(xué)思維障礙的具體表現(xiàn)
由于高中數(shù)學(xué)思維障礙產(chǎn)生的原因不盡相同,作為主體的學(xué)生的思維習(xí)慣、方法也都有所區(qū)別,所以,高中數(shù)學(xué)思維障礙的表現(xiàn)各異,具體的可以概括為:
1.數(shù)學(xué)思維的膚淺性:由于學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,對一些數(shù)學(xué)概念或數(shù)學(xué)原理的發(fā)生、發(fā)展過程沒有深刻的去理解,一般的學(xué)生僅僅停留在表象的概括水平上,不能脫離具體表象而形成抽象的概念,自然也無法擺脫局部事實的片面性而把握事物的本質(zhì)。由此而產(chǎn)生的后果:1〉學(xué)生在分析和解決數(shù)學(xué)問題時,往往只順著事物的發(fā)展過程去思考問題,注重由因到果的思維習(xí)慣,不注重變換思維的方式,缺乏沿著多方面去探索解決問題的途徑和方法。
2.數(shù)學(xué)思維的差異性:由于每個學(xué)生的數(shù)學(xué)基礎(chǔ)不盡相同,其思維方式也各有特點,因此不同的學(xué)生對于同一數(shù)學(xué)問題的認識、感受也不會完全相同,從而導(dǎo)致學(xué)生對數(shù)學(xué)知識理解的偏頗。這樣,學(xué)生在解決數(shù)學(xué)問題時,一方面不大注意挖掘所研究問題中的隱含條件,抓不住問題中的確定條件,影響問題的解決。
3.數(shù)學(xué)思維定勢的消極性:由于高中學(xué)生已經(jīng)有相當(dāng)豐富的解題經(jīng)驗,因此,有些學(xué)生往往對自己的某些想法深信不疑,很難使其放棄一些陳舊的解題經(jīng)驗,思維陷入僵化狀態(tài),不能根據(jù)新的問題的特點作出靈活的反應(yīng),常常阻抑更合理有效的思維甚至造成歪曲的認識。
三、高中學(xué)生數(shù)學(xué)思維障礙的突破
1.在高中數(shù)學(xué)起始教學(xué)中,教師必須著重了解和掌握學(xué)生的基礎(chǔ)知識狀況,尤其在講解新知識時,要嚴格遵循學(xué)生認知發(fā)展的階段性特點,照顧到學(xué)生認知水平的個性差異,強調(diào)學(xué)生的主體意識,發(fā)展學(xué)生的主動精神,培養(yǎng)學(xué)生良好的意志品質(zhì);同時要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【關(guān)鍵詞】高中 數(shù)學(xué) 思維
高中數(shù)學(xué)的數(shù)學(xué)思維雖然并非總等于解題,但我們可以這樣講,高中學(xué)生的數(shù)學(xué)思維的形成是建立在對高中數(shù)學(xué)基本概念、定理、公式理解的基礎(chǔ)上的;發(fā)展高中學(xué)生數(shù)學(xué)思維最有效的方法是通過解決問題來實現(xiàn)的。然而,在學(xué)習(xí)高中數(shù)學(xué)過程中,我們經(jīng)常聽到學(xué)生反映上課聽老師講課,聽得很“明白”,但到自己解題時,總感到困難重重,無從人手;有時,在課堂上待我們把某一問題分析完時,常常看到學(xué)生拍腦袋:“唉,我怎么會想不到這樣做呢?”事實上,有不少問題的解答,同學(xué)發(fā)生困難,并不是因為這些問題的解答太難以致學(xué)生無法解決,而是其思維形式或結(jié)果與具體問題的解決存在著差異,也就是說,這時候,學(xué)生的數(shù)學(xué)思維存在著障礙。這種思維障礙,有的是來自于我們教學(xué)中的疏漏,而更多的則來自于學(xué)生自身,來自于學(xué)生中存在的非科學(xué)的知識結(jié)構(gòu)和思維模式。因此,研究高中學(xué)生的數(shù)學(xué)思維障礙對于增強高中學(xué)生數(shù)學(xué)教學(xué)的針對性和實效性有十分重要的意義。
一、高中學(xué)生數(shù)學(xué)思維障礙的形成原因
根據(jù)布魯納的認識發(fā)展理論,學(xué)習(xí)本身是一種認識過程,在這個課程中,個體的學(xué)是要通過已知的內(nèi)部認知結(jié)構(gòu),對“從外到內(nèi)”的輸入信息進行整理加工,以一種易于掌握的形式加以儲存,也就是說學(xué)生能從原有的知識結(jié)構(gòu)中提取最有效的舊知識來吸納新知識,即找到新舊知識的“媒介點”,這樣,新舊知識在學(xué)生的頭腦中發(fā)生積極的相互作用和聯(lián)系,導(dǎo)致原有知識結(jié)構(gòu)的不斷分化和重新組合,使學(xué)生獲得新知識。但是這個過程并非總是一次性成功的。一方面,如果在教學(xué)過程中,教師不顧學(xué)生的實際情況(即基礎(chǔ))或不能覺察到學(xué)生的思維困難之處,而是任由教師按自己的思路或知識邏輯進行灌輸式教學(xué),則到學(xué)生自己去解決問題時往往會感到無所適從;另一方面,當(dāng)新的知識與學(xué)生原有的知識結(jié)構(gòu)不相符時或者新舊知識中間缺乏必要的“媒介點”時,這些新知識就會被排斥或經(jīng)“校正”后吸收。因此,如果教師的教學(xué)脫離學(xué)生的實際;如果學(xué)生在學(xué)習(xí)高中數(shù)學(xué)過程中,其新舊數(shù)學(xué)知識不能順利“交接”,那么這時就勢必會造成學(xué)生對所學(xué)知識認知上的不足、理解上的偏頗,從而在解決具體問題時就會產(chǎn)生思維障礙,影響學(xué)生解題能力的提高。
二、高中學(xué)生數(shù)學(xué)思維障礙的突破
1.在高中數(shù)學(xué)起始教學(xué)中,教師必須著重了解和掌握學(xué)生的基礎(chǔ)知識狀況,尤其在講解新知識時,要嚴格遵循學(xué)生認知發(fā)展的階段性特點,照顧到學(xué)生認知水平的個性差異,強調(diào)學(xué)生的主體意識,發(fā)展學(xué)生的主動精神,培養(yǎng)學(xué)生良好的意志品質(zhì);同時要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。興趣是最好的老師,學(xué)生對數(shù)學(xué)學(xué)習(xí)有了興趣,才能產(chǎn)生數(shù)學(xué)思維的興奮灶,也就是更大程度地預(yù)防學(xué)生思維障礙的產(chǎn)生。教師可以幫助學(xué)生進一步明確學(xué)習(xí)的目的性,針對不同學(xué)生的實際情況,因材施教,分別給他們提出新的更高的奮斗目標,使學(xué)生有一種“跳一跳,就能摸到桃”的感覺,提高學(xué)生學(xué)好高中數(shù)學(xué)的信心。
例:高一年級學(xué)生剛進校時,一般我們都要復(fù)習(xí)一下二次函數(shù)的內(nèi)容,而二次函數(shù)中最大、最小值尤其是含參數(shù)的二次函數(shù)的最大、小值的求法學(xué)生普遍感到比較困難,為此我作了如下題型設(shè)計,對突破學(xué)生的這個難點問題有很大的幫助,而且在整個操作過程中,學(xué)生普遍(包括基礎(chǔ)差的學(xué)生)情緒亢奮,思維始終保持活躍。設(shè)計如下:
1)求出下列函數(shù)在x∈[0,3]時的最大、最小值:(1)y=(x-1)2+1,(2)y=(x+1)2+1,(3)y=(x-4)2+1
2)求函數(shù)y=x2-2ax+a2+2,x∈[0,3]時的最小值。
3)求函數(shù)y=x2-2x+2,x∈[t,t+1]的最小值。
上述設(shè)計層層遞進,每做完一題,適時指出解決這類問題的要點,大大地調(diào)動了學(xué)生學(xué)習(xí)的積極性,提高了課堂效率。
2.重視數(shù)學(xué)思想方法的教學(xué),指導(dǎo)學(xué)生提高數(shù)學(xué)意識。數(shù)學(xué)意識是學(xué)生在解決數(shù)學(xué)問題時對自身行為的選擇,它既不是對基礎(chǔ)知識的具體應(yīng)用,也不是對應(yīng)用能力的評價,數(shù)學(xué)意識是指學(xué)生在面對數(shù)學(xué)問題時該做什么及怎么做,至于做得好壞,當(dāng)屬技能問題,有時一些技能問題不是學(xué)生不懂,而是不知怎么做才合理,有的學(xué)生面對數(shù)學(xué)問題,首先想到的是套那個公式,模仿那道做過的題目求解,對沒見過或背景稍微陌生一點的題型便無從下手,無法解決,這是數(shù)學(xué)意識落后的表現(xiàn)。數(shù)學(xué)教學(xué)中,在強調(diào)基礎(chǔ)知識的準確性、規(guī)范性、熟練程度的同時,我們應(yīng)該加強數(shù)學(xué)意識教學(xué),指導(dǎo)學(xué)生以意識帶動雙基,將數(shù)學(xué)意識滲透到具體問題之中。如:設(shè)x2+y2=25,求u=的取值范圍。若采用常規(guī)的解題思路,μ的取值范圍不大容易求,但適當(dāng)對u進行變形:轉(zhuǎn)而構(gòu)造幾何圖形容易求得u∈[6,6],這里對u的適當(dāng)變形實際上是數(shù)學(xué)的轉(zhuǎn)換意識在起作用。因此,在數(shù)學(xué)教學(xué)中只有加強數(shù)學(xué)意識的教學(xué),如“因果轉(zhuǎn)化意識”“類比轉(zhuǎn)化意識”等的教學(xué),才能使學(xué)生面對數(shù)學(xué)問題得心應(yīng)手、從容作答。所以,提高學(xué)生的數(shù)學(xué)意識是突破學(xué)生數(shù)學(xué)思維障礙的一個重要環(huán)節(jié)。
關(guān)鍵詞:高中數(shù)學(xué);學(xué)習(xí)方法
我們都知道初中數(shù)學(xué)教材語言通俗,容易理解,而且側(cè)重于研究常量,沒那么抽象,所以學(xué)起來相對容易。而高中數(shù)學(xué)完全不同,它言語抽象,邏輯性強,知識與知識之間有極強的連貫性和系統(tǒng)性,所以學(xué)起來有一定難度。很多高中生都反應(yīng)在數(shù)學(xué)上花的時間最長,可還是學(xué)不好。這是因為,高中數(shù)學(xué)的學(xué)習(xí)是要講求方法的。下面,筆者總結(jié)了一些高中數(shù)學(xué)的學(xué)習(xí)方法,望對大家有所幫助,也歡迎批評和指導(dǎo)。
一、培養(yǎng)濃厚的學(xué)習(xí)興趣
俗話說“興趣是最好的老師”,這句話非常有道理。做什么事都是從興趣開始的,學(xué)習(xí)更是如此。很多高中生說自己學(xué)不好數(shù)學(xué),其實都是沒有對數(shù)學(xué)培養(yǎng)濃厚的興趣。一開始沒興趣,所以學(xué)不好;因為學(xué)得不好,于是又開始有厭煩心理;有了厭煩心理,就更不可能學(xué)好。這樣長此以往,形成惡性循環(huán),高中數(shù)學(xué)就成了一大部分學(xué)生最頭疼的學(xué)科。
那么怎么培養(yǎng)學(xué)習(xí)高中數(shù)學(xué)的興趣呢?下面是筆者的幾點建議:
1.正確看待高中數(shù)學(xué),明確其地位和作用
首先數(shù)學(xué)作為三大主科之一,是每個高中生必學(xué)科目,也是貫徹整個學(xué)習(xí)過程的科目。尤其到了高中,我們會發(fā)現(xiàn)數(shù)學(xué)成績是組成總成績的重要部分,是拉開高分與低分的決定性科目。當(dāng)然,筆者并不是機械地在強調(diào)數(shù)學(xué)在應(yīng)試教育中的重要性,而是說數(shù)學(xué)成績對學(xué)生個人整體成績的影響很大,所以意識到這一點,我們沒有理由不重視數(shù)學(xué)。
其次,學(xué)好數(shù)學(xué)對其它學(xué)科有輔助作用。我們知道,學(xué)科與學(xué)科之間都是互相聯(lián)系的,沒有一個學(xué)科是獨立存在的。學(xué)好數(shù)學(xué)對學(xué)好其它相關(guān)聯(lián)學(xué)科,如物理、化學(xué)、地理等有很大的輔助作用。
最后,無論學(xué)好哪一門科目都是有成就感的,能學(xué)好一般人學(xué)不好的數(shù)學(xué)更是讓自己覺得驕傲。而這種驕傲無形中給了自己信心,于是便更敢于挑戰(zhàn)有難度的知識,形成良性循環(huán),從而越學(xué)越好。
2.由易到難,循序漸進
學(xué)習(xí)任何東西都要遵循從易到難的順序,基礎(chǔ)打好了,才能更好地學(xué)習(xí)后面有難度的知識。另外,這種由易到難的順序還利于自信心的培養(yǎng),不易導(dǎo)致挫敗感。在這里,筆者強調(diào),一定要注重基礎(chǔ)知識的積累,不可忽視最基礎(chǔ)或你認為最簡單的東西。遇到較難的問題,不可灰心,要告訴自己挑戰(zhàn)自己的時候到了,并且自己一定會征服它。
3.多和與自己水平相當(dāng)?shù)耐瑢W(xué)探討
這也是培養(yǎng)興趣的一種有效方法。和與自己水平相當(dāng)?shù)耐瑢W(xué)探討問題,既有一定的競爭性,又不至于喪失信心。兩人或多人在探討問題的過程中各抒己見,既學(xué)到了對方的長處,也展示了自己,真正達到了快樂學(xué)習(xí)的目的。
二、注重雙基——基礎(chǔ)知識和基本能力
筆者上面已經(jīng)強調(diào)不可忽視基礎(chǔ)知識,因為學(xué)好基礎(chǔ)知識是進一步學(xué)習(xí)高中數(shù)學(xué)的前提。在這里,筆者建議對基礎(chǔ)知識的學(xué)習(xí)采取以下方法:
1.課前預(yù)習(xí)
課前預(yù)習(xí)不僅能提高聽課效果,還能培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。課前預(yù)習(xí)著要重把教材上的基礎(chǔ)知識弄懂,課上主要跟著教師的思路走,把腦海中零碎的知識系統(tǒng)化。實驗證明,有課前預(yù)習(xí)習(xí)慣的學(xué)生聽課效果要比沒有預(yù)習(xí)習(xí)慣的學(xué)生好。
2.課上認真聽講,記好筆記
高中數(shù)學(xué)課上最忌諱走神,一旦走神,就很難再跟上教師的思路。所以要努力集中自己的注意力,緊跟教師的思路前行,千萬不能掉隊。遇到不懂的,一定要及時問,如果不懂裝懂,很可能會影響后面的聽課效果。
對于記筆記,也是筆者著重強調(diào)的。課上教師講課的同時,學(xué)生一定要邊聽邊記,書上有的可以略記,但要有明確的標注,以便課后復(fù)習(xí);著重要詳記教師補充的內(nèi)容和方法,不要以為課上聽明白了就不必寫在筆記本上了,只在課上識記一遍是遠遠不夠的,萬一課下忘了就無從復(fù)習(xí)了。所以,無論如何,高中數(shù)學(xué)課上記筆記是不能少的。
3.課下多做題,及時鞏固
數(shù)學(xué)課上教師講的理論性知識居多,雖有例子,但遠遠達不到使學(xué)生熟練的量。這就要求學(xué)生課下要多做題,及時鞏固教師講授的新知識。俗話說“熟能生巧”,只有練多了,才能變書本上、課堂上的東西為自己的知識。教師一般都會留課后作業(yè),學(xué)生除了要完成課后作業(yè)外,也要有自己的計劃,多做多練。
有了基礎(chǔ)知識,學(xué)生就要培養(yǎng)基本能力了。高中數(shù)學(xué)基本能力包括運算能力、邏輯思維能力,以及空間想象能力。
1.運算能力
高中數(shù)學(xué)的運算能力包括數(shù)的運算、式的變形、方程和不等式的求解、初等函數(shù)的運算、幾何量的測量與計算、數(shù)列和函數(shù)極限及集合、微積分、概率等。這些基本計算能力都離不開基礎(chǔ)知識的學(xué)習(xí)。
2.邏輯思維能力
邏輯思維是學(xué)習(xí)數(shù)學(xué)的核心。它以數(shù)學(xué)概念、判斷和推理為基本形式,以分析、綜合、概括、歸納等為主要方法,這就要求學(xué)生要多思考,培養(yǎng)自己的邏輯思維能力。
3.空間想象能力
高中數(shù)學(xué)的學(xué)習(xí)需要學(xué)生有豐富的空間想象能力,能夠由簡單的實物想象出幾何圖形,由幾何圖形想象出簡單的實物,要能夠在腦海中構(gòu)建基本圖形。
三、養(yǎng)成良好的學(xué)習(xí)習(xí)慣