前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇機械系統設計論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
機械臂的模型仿真采用MatLab平臺下的RoboticsToolbox工具箱,從而可以很方便地對機械臂運動學的理論進行學習和驗證。工具箱內部包含了很多機械臂運動學方面的功能函數,如機械臂的坐標變換及機械臂正逆運動等。通過調用Link和Robot兩個功能函數,利用Denavit-Hartenberg參數表來描述機械臂各個連桿間的位移關系,可以在三維空間為機械臂的每一個連桿建立一個坐標系或相對于機械臂底座的相對坐標系,進而確定每一個桿件的位置和方向。在建立多個運動坐標的時候,為了方便,一般建立一張關節和連桿參數的D-H參數表。根據圖4所示的結構模型建立的參數如表1所示。利用表1建立的D-H參數表來進行機械臂數學模型的運動仿真,在Matlab中將6個關節初始角度按照表1設置為θ1=90°、θ2=0°、θ3=0°、θ4=-90°、θ5=90°、θ6=0°。通過調節工具箱中每個自由度對應的活動范圍可以實現機械臂任一關節的位姿運動。
2機械臂控制系統硬件實現
采摘機械臂要實現其特定的動作離不開控制系統的支持,其控制系統主要由AVR主控板和舵機控制擴展板組成,此外還有一些輔助的硬件模塊。例如,使其系統穩定工作的開關電源模塊、調整工作姿態的鍵盤模塊、實現人機對話的顯示模塊和語音播報模塊。同時,為了實現在上位機上的監控,設計了基于MAX232的串行通信接口。
3機械臂控制系統軟件實現
機械臂控制系統軟件主要由主控板控制程序和上位機監控程序兩部分組成。采摘機械臂主程序流程如圖8所示。整個程序主要是通過鍵盤模塊上按鍵的控制來切換操作模式,也可以在上位機設計的監控軟件中來進行模式的選擇判斷。主程序主要由單自由度功能模式、多自由度功能模式、軌跡規劃功能模式這3種工作模式組成,通過這3種工作模式,可以完整的展示采摘機械臂的整體自由度配合情況。為了在上位機上實現對機械臂的監控,借助于Labview軟件設計了機械臂上位機控制系統。Labview使用的是圖形化編輯語言G編寫程序,產生的程序是框圖的形式[6]。根據需求選擇合適的控件并進行合理的布局,就可以構建一個美觀的儀器儀表界面。設計的控制界面如圖9所示,該界面包含有六個舵機的數據監控轉盤、串口通訊設置、速度調節滑塊、按鍵模塊。通過RS232通信協議該監控軟件可以實時的實現對六個自由度轉角和方向的控制,其中舵機轉盤上的數值代表脈寬值,其可調整的范圍為500~2500μs,代表舵機相應的角度為0°~180°。在上位機上的控制信號發送給AVR主控制板,主控制板對接收到的上位機數據進行分析處理,將需要的運動形式及參數發送給舵機控制板,各個舵機根據接收到的控制數據進行相應的動作響應。
4結語
本系統高壓發泡機以高性價比的臺達DVP系列PLC和臺達的DOP的人機界面為核心控制單元,有多組工作模式多組配方工藝參數選擇,且可自主編輯工藝參數,流量注入精確穩定,壓力流速可控可調,故障報警實時監控。實踐證明,相比老式發泡機,PLC控制系統的設備性能穩定可靠,易于操作,工作效率大幅提高。發泡機控制系統充分利用了現代先進技術,提高了勞動生產率,改善了勞動條件,減輕了工人的勞動強度,保持穩定的發泡倍數,克服了人為的不穩定因數,具有良好的應用前景。
發泡機是利用塑料顆粒作為發泡包裝的原料,可以對精密儀器、電子類產品、工藝品、插花等多類怕震、怕壓的產品進行現場的發泡包裝。發泡機作為一種機電一體化產品,在現代工業生產的自動化控制中占有重要的地位。高壓發泡機廣泛用在各種行業,可用于汽車裝飾、保溫墻噴涂、保溫管道制造、自行車和摩托車車座海綿的加工等等。
發泡機最早出現于國外,其原始機型是采用葉輪高速旋轉制泡,故又名“打泡機”。后來隨著技術的不斷進步,發泡機的技術含量不斷提高,新的機型不斷出現,形成了不同的技術體系。我國早在20世紀50年代就開始使用發泡機,但不是專用的發泡機型,而是采用砂漿攪拌機。即將發泡劑直接加入砂漿攪拌機或混凝土攪拌機,讓發泡劑和砂漿或混凝土一起攪拌生成泡沫。20世紀70年代前后,開始出現專用的發泡劑,即高速葉輪發泡機。以后又不斷技術升級和換代,如今已發展為以高壓充氣為主體的第三代機型,基本可滿足泡沫混凝土的需要擠出技術的發展越來越具有如下特色:一方面要求擠出系統高效率,另方面又要求擠出系統具有靈活性、廣泛適應性。應用廣泛的高效擠出系統應兼頤這兩個方面。其中發泡機控制系統將直接影響該產品的發泡倍數的穩定。發泡機控制系統的發泡倍數受原料添加重量和發泡好后粒子的總量決定,蒸汽壓力和氣壓不直接影響發泡倍數。因此,為這類發泡機開發出一種可以保持穩定的發泡倍數的控制系統是一個有著較大實際意義的課題。
根據國家機械設計制造及其自動化專業畢業培養標準中對畢業能力要求之4“具有設計機械系統、部件的能力”要求,整合現有教學內容,形成了基礎知識遞增和設計能力遞進的機械設計類課程教學環節結構。其中先修課程包括數學類、工程力學、機械制圖、公差與技術測量等基礎課和專業基礎課。為達到“具有設計機械系統、部件的能力”的畢業要求,設計了課程教學及課內實驗、基礎設計能力培養、創新設計能力培養三個能力遞進培養環節。
2機械設計類課程教學及課內實驗
課程教學及課內實驗教學環節分為機械原理和機械設計兩個部分,每部分。含課內實驗,課程內容及培養目標如下:機械原理課程是一門培養學生機械機構運動設計與分析的技術基礎課,主要研究機構的結構分析、運動分析和動力分析,常用機構設計的基本理論和方法,機械系統傳動方案的規劃與設計,其主要任務是培養學生:第一,理論聯系實際的學風,設計實踐能力和創新精神。第二,掌握機構運動方案設計的能力。第三,具有機械系統運動簡圖的繪制,計算機輔助機構分析和設計的能力。機械原理實驗教學是機械原理課程教學中的實踐環節。在實驗中通過安排部分課程基本理論的驗證性實驗,使學生進一步加深對課堂教學內容的理解。通過增設一些綜合性、設計性實驗,培養學生基本知識、基礎理論與實際項目需求的理論知識應用能力,同時培養學生創新意識和能力。通過設立較多的選修實驗,促進學生的個性發展。機械設計課程是一門培養學生機械設計能力的技術基礎課,在教學內容方面著重掌握機械設計的基本知識、基本理論、基本方法和創新思維,通過對本課程的學習,使學生掌握常用機構和機器中各種通用零件的基本理論和基本知識,初步具有機械結構方面的分析、設計能力,同時注意培養學生正確的設計思想和嚴謹的工作作風。機械設計實驗教學通過設立部分驗證性實驗,使學生進一步加深理解課堂教學的內容;通過設立一些綜合性、設計性實驗,培養學生理論聯系實際的能力及機械結構設計的創新意識和創新能力;通過強調學生參與實驗的全過程,培養學生的動手操作能力;通過設立較多的選做實驗,滿足學生的求知欲,促進學生的個性發展。
3基礎設計能力培養
機械設計課程設計是機械設計基礎類課程的重要實踐性環節,通過對機械傳動裝置和簡單機械的設計,使學生綜合運用機械設計課程和其他先修課程的理論和實際知識,熟悉機械設計的一般規律,掌握機械通用零部件及簡單機械的設計理論及設計方法。培養學生理論聯系實際的正確設計思想,樹立工程意識,培養獨立分析和解決工程實際問題的能力,為畢業設計和以后從事工程設計工作打下良好的基礎。課程的教學目的:第一,學習機械設計的一般方法、步驟,掌握機械設計的一般規律。第二,學會從機器的功能要求出發,合理選擇傳動機構的類型,制定傳動設計方案,正確計算零件的工作能力,確定它的結構、形狀、尺寸及材料,并考慮制造工藝、使用、維護、經濟和安全等問題,培養機械設計能力。第三,進行機械設計基本技能訓練,例如計算、繪圖,運用標準、規范、手冊、圖冊和設計資料,以及使用經驗數據和處理數據等。第四,通過編寫設計說明書,提高學生文字表達能力,掌握撰寫技術文件的有關要求;培養學生運用計算機撰寫論文的能力。第五,訓練學生用CAD繪圖的能力。機械綜合課程設計是形成機械裝備設計能力的重要實踐性教學環節。內容以車床或銑床的主傳動系統設計為主線,以所學過的機械制造裝備的基礎知識為支撐,完成主傳動系統設計、操縱裝置布置、工程分析計算等環節的訓練。其目的是在相關先修課程學習后,進行機械結構設計綜合訓練,使學生掌握機械系統分析和設計的基本步驟和方法,培養和鍛煉學生綜合運用所學知識解決實際工程問題的能力。
4創新設計能力培養
學生創新設計能力培養包括機械產品創新設計與仿真和機械創新設計與制作兩個環節:機械產品創新設計與仿真是學生以項目組的形式自主開展的為期一年的研發與制作項目,在學院的統一命題下完成一項任務。提高學生自主學習、問題求解、團隊協作、項目管理、綜合創新等方面的能力和素質。機械創新設計與制作是結合學生已有的知識儲備,充分發揮學生的創新設計思維,通過機構綜合模擬現實自然界生物的動作行為,并輔以相應的控制系統達到機構的協調運動。在教師的啟發和指導下,學生以組為單位自主地進行相關內容科技文獻檢索、方案設計、虛擬仿真、繪制加工圖紙、撰寫設計說明書并進行答辯,通過工程實踐培養學生靈活運用所學機械設計知識的能力。
5結論
[關鍵詞]游戲引擎;機械動力仿真;虛擬現實技術
中圖分類號:TP391.9;TD672 文獻標識碼:A 文章編號:1009-914X(2014)33-0225-02
一、引言
三維游戲由于引擎技術在建模技術、物理引擎技術、復雜環境的高質量實時渲染技術、動畫技術、人工智能技術、對象的行為控制技術等各方面不斷的完善和強大,已經極大地引起了人們的關注和重視。游戲引擎不再僅用于游戲娛樂產業的開發,更多的滲透到了教育軟件開發、虛擬現實應用、動畫影視(特技)制作、軍事訓練、實時模擬等人類生活的各個領域。極大地改變了人們的生活方式和思維方式。
游戲引擎技術尤其物理引擎技術不斷的研究發展,讓我們意識到仿真虛擬機械動力的可能性。利用游戲引擎虛擬機械運動,將為開發教育游戲中的虛擬物理實驗、網上數字科技館、娛樂型游戲中的機械道具和多樣化游戲任務等具有重要的應用價值和研究意義。
傳統的機械動力仿真技術和虛擬現實技術雖然在一定程度上也能虛擬機械的運動,但是由于那些技術不可避免的弊端對機械動力仿真技術應用在其他領域形成了瓶頸。傳統的機械工業仿真技術缺乏交互性,設計復雜,表現單調。隨著多媒體技術、計算機動畫技術、虛擬現實技術、網絡技術等技術的滲入,以VRML(Virtual Reality Modeling Language虛擬現實造型語言)或Cult3D為代表的技術給機械仿真領域帶來了交互性,但是由于傳統的虛擬現實技術固有的特性,如運動行為的硬編碼、交互性差、畫面不流暢、系統實現復雜等,使得基于游戲引擎技術虛擬機械動力的技術具有很大的優勢和更大的發展前景。
本論文研究的技術充分利用了游戲平臺的優勢,它不僅具有傳統虛擬現實系統所有的優點,而且具有3D游戲般的交互性和逼真的動力學模擬。從開發角度而言,游戲引擎的實時渲染能力、快速的計算能力、組件化、可重用性以及面向對象的編程方式等,都使得應用游戲引擎成為一種非常便捷和有效的仿真技術手段。本文描述了利用游戲引擎模擬簡單的機械動力實例的核心技術。
二、機械動力仿真技術研究背景
概念設計是機械設計過程中的最初階段,主要目的是獲得產品的本質形狀。[3]機械仿真技術的發展為機械工業概念設計注入了新的活力。計算機運算處理能力的提高為機械系統的仿真提供了更好的基礎。
我國機械系統傳統的計算機輔助工具多數是AutoCAD, Pro/E, Solid Works, Solid Edge, 3D MAX等2D和3D軟件,此類建模軟件含有大量的圖形文件,容量較大,不利于網上傳輸和遠程控制。同時這種方式建立的三維模型是靜態的,動畫是設計者事先設計好的一副副二維動畫,用戶只是被動的接受,而不能按照自己的意愿進行實時交互式仿真。
虛擬現實技術作為一種更為人性化的交互技術,近幾年來逐漸滲透到各個應用領域。虛擬現實技術的沉浸特征、交互特征和構想特征,剛好彌補了上述傳統方法的不足。因此,運用虛擬現實的方法實現機械設計系統成為必然。傳統的機械仿真都是代碼編寫控制的運動效果,沒有實現通過物體間力的作用而讓物體產生運動,所以不免比較生硬,不能具有可復用性和柔性。
綜上可知,機械工業虛擬仿真技術由于其復雜性、綜合性決定了開發的困難,因此勢必需要一些工具來輔助開發,游戲引擎由于其本身的特點,成為開發機械工業虛擬系統的有力工具。
三、游戲引擎技術
1.三維游戲引擎
一般而言,三維游戲引擎包括:引擎內核、三維圖形引擎、物理引擎、人工智能系統、3D模型和圖像庫、網絡引擎、輸入系統。三維游戲引擎中各子系統關系可由(圖1)表示。
2.游戲引擎技術的優勢
(1)利用游戲引擎可以簡化系統制作的復雜度,縮短開發時間,降低制作成本。
(2)游戲引擎中強大的物理引擎為該機械動力仿真系統提供了保障,這也是不同于其他虛擬現實技術的閃光點。
(3)該游戲引擎能快速嵌入到網頁中運行,因此,極大的活躍了網頁式三維虛擬現實技術,因為傳統的三維網頁虛擬技術在WEB中運行效果不是很好,運行緩慢,效果單調,交互性差,游戲引擎技術的支持在一定程度上可彌補這些不足。
(4)游戲引擎的最大特點是可以實時渲染,這樣使得開發者可以及時瀏覽和調整系統。Unity3D游戲引擎甚至可以支持在程序運行時改動場景中物體的屬性。這樣的實時性改變,使得開發者能迅速獲得最佳的設置效果值。
(5)基于游戲引擎技術開發的機械動力仿真系統,具有游戲般的交互能力,活躍了機械展示的表達方式。
(6)在游戲引擎平臺上的二次編程代碼被稱為“腳本”,大多數腳本語言都是面向對象的編程特點,具有封裝、多態、可復用性等特性。簡單易學,使虛擬系統設計者易于開發應用。
四、主要結論
3D游戲引擎技術最大的特點就是它把一個程序中可以重復利用的部分,以精巧的模塊組織起來,將其規格化、最佳化,以利于程序重用技術。利用引擎不僅可以開發出“景物真實、動作真實、感覺真實”的三維系統,更重要的是利用它我們可以節省大量的人員和資金,簡化系統制作的復雜度,縮短開發時間,降低制作成本,并且游戲引擎普遍具有的FPS(First Person Shooting第一人稱射擊游戲)特性,這一特點可以巧妙的應用于交互設計中。游戲引擎的實時渲染、動態編譯和可視化編輯功能有效解決了傳統的虛擬現實技術中存在的渲染耗費時間和硬件成本的問題。
3D游戲引擎最吸引人的是它的強大的PhysX物理引擎和真實的圖形渲染引擎。強大的功能會提升研究的成功性。從開發方面考慮,該引擎的腳本語言近似c#或javascript,使得開發輕車熟路,而且腳本是動態編譯的,運行速度和匯編接近,不會因為腳本的問題而影響系統的執行效率。從方面考慮,該引擎支持跨平臺,而且用該引擎開發的作品可以通過網頁直接運行,是3D虛擬現實作品輕松實現網頁漫游的良好解決方案。
參考文獻
[1] 楊紅娟,周以齊,石柏成,陳成軍.機械系統虛擬現實建模方法的研究.中國圖像圖形學會.642~646.
[2] 劉強,劉春全.機械動力仿真軟件在抽油機運動學上的應用.裝備制造技術,2008年,第12期.49~51.
[3] 石其樂.簡易型虛擬現實技術的實現.寧夏工程技術,2003 年8 月,第2 卷第3期:227~245
關鍵詞:問題; 先進制造技術; 前沿科學; 應用前景
論文
制造業是現代國民經濟和綜合國力的重要支柱,其生產總值一般占一個國家國內生產總值的20%~55%。在一個國家的企業生產力構成中,制造技術的作用一般占60%左右。專家認為,世界上各個國家經濟的競爭,主要是制造技術的競爭。其競爭能力最終體現在所生產的產品的市場占有率上。隨著經濟技術的高速發展以及顧客需求和市場環境的不斷變化,這種競爭日趨激烈,因而各國政府都非常重視對先進制造技術的研究。
1 當前制造科學要解決的問題
當前制造科學要解決的問題主要集中在以下幾方面:
(1)制造系統是一個復雜的大系統,為滿足制造系統敏捷性、快速響應和快速重組的能力,必須借鑒信息科學、生命科學和社會科學等多學科的研究成果,探索制造系統新的體系結構、制造模式和制造系統有效的運行機制。制造系統優化的組織結構和良好的運行狀況是制造系統建模、仿真和優化的主要目標。制造系統新的體系結構不僅對制造企業的敏捷性和對需求的響應能力及可重組能力有重要意義,而且對制造企業底層生產設備的柔性和可動態重組能力提出了更高的要求。生物制造觀越來越多地被引入制造系統,以滿足制造系統新的要求。
(2)為支持快速敏捷制造,幾何知識的共享已成為制約現代制造技術中產品開發和制造的關鍵問題。例如在計算機輔助設計與制造(CAD/CAM)集成、坐標測量(CMM)和機器人學等方面,在三維現實空間(3-Real Space)中,都存在大量的幾何算法設計和分析等問題,特別是其中的幾何表示、幾何計算和幾何推理問題;在測量和機器人路徑規劃及零件的尋位(如Localization)等方面,存在C-空間
(配置空間Configuration Space)的幾何計算和幾何推理問題;在物體操作(夾持、抓取和裝配等)描述和機器人多指抓取規劃、裝配運動規劃和操作規劃方面則需要在旋量空間(Screw Space)進行幾何推理。制造過程中物理和力學現象的幾何化研究形成了制造科學中幾何計算和幾何推理等多方面的研究課題,其理論有待進一步突破,當前一門新學科--計算機幾何正在受到日益廣泛和深入的研究。
(3)在現代制造過程中,信息不僅已成為主宰制造產業的決定性因素,而且還是最活躍的驅動因素。提高制造系統的信息處理能力已成為現代制造科學發展的一個重點。由于制造系統信息組織和結構的多層次性,制造信息的獲取、集成與融合呈現出立體性、信息度量的多維性、以及信息組織的多層次性。在制造信息的結構模型、制造信息的一致性約束、傳播處理和海量數據的制造知識庫管理等方面,都還有待進一步突破。
(4)各種人工智能工具和計算智能方法在制造中的廣泛應用促進了制造智能的發展。一類基于生物進化算法的計算智能工具,在包括調度問題在內的組合優化求解技術領域中,受到越來越普遍的關注,有望在制造中完成組合優化問題時的求解速度和求解精度方面雙雙突破問題規模的制約。制造智能還表現在:智能調度、智能設計、智能加工、機器人學、智能控制、智能工藝規劃、智能診斷等多方面。
這些問題是當前產品創新的關鍵理論問題,也是制造由一門技藝上升為一門科學的重要基礎性問題。這些問題的重點突破,可以形成產品創新的基礎研究體系。
2 現代機械工程的前沿科學
不同科學之間的交叉融合將產生新的科學聚集,經濟的發展和社會的進步對科學技術產生了新的要求和期望,從而形成前沿科學。前沿科學也就是已解決的和未解決的科學問題之間的界域。前沿科學具有明顯的時域、領域和動態特性。工程前沿科學區別于一般基礎科學的重要特征是它涵蓋了工程實際中出現的關鍵科學技術問題。
超聲電機、超高速切削、綠色設計與制造等領域,國內外已經做了大量的研究工作,但創新的關鍵是機械科學問題還不明朗。大型復雜機械系統的性能優化設計和產品創新設計、智能結構和系統、智能機器人及其動力學、納米摩擦學、制造過程的三維數值模擬和物理模擬、超精度和微細加工關鍵工藝基礎、大型和超大型精密儀器裝備的設計和制造基礎、虛擬制造和虛擬儀器、納米測量及儀器、并聯軸機床、微型機電系統等領域國內外雖然已做了不少研究,但仍有許多關鍵科學技術問題有待解決。
信息科學、納米科學、材料科學、生命科學、管理科學和制造科學將是改變21世紀的主流科學,由此產生的高新技術及其產業將改變世界的面貌。因此,與以上領域相交叉發展的制造系統和制造信息學、納米機械和納米制造科學、仿生機械和仿生制造學、制造管理科學和可重構制造系統等會是21世紀機械工程科學的重要前沿科學。
2.1 制造科學與信息科學的交叉--制造信息科學
機電產品是信息在原材料上的物化。許多現代產品的價值增值主要體現在信息上。因此制造過程中信息的獲取和應用十分重要。信息化是制造科學技術走向全球化和現代化的重要標志。人們一方面對制造技術開始探索產品設計和制造過程中的信息本質,另一方面對制造技術本身加以改造,以使得其適應新的信息化制造環境。隨著對制造過程和制造系統認識的加深,研究者們正試圖以全新的概念和方式對其加以描述和表達,以進一步達到實現控制和優化的目的。
與制造有關的信息主要有產品信息、工藝信息和管理信息,這一領域有如下主要研究方向和內容:
(1) 制造信息的獲取、處理、存儲、傳遞和應用,大量制造信息向知識和決策轉化。
(2) 非符號信息的表達、制造信息的保真傳遞、制造信息的管理、非完整制造信息狀態下的生產決策、虛擬管理制造、基于網絡環境下的設計和制造、制造過程和制造系統中的控制科學問題。
這些內容是制造科學和信息科學基礎融合的產物,構成了制造科學中的新分支--制造信息學。
2.2 微機械及其制造技術研究
微型電子機械系統(MEMS),是指集微型傳感器、微型執行器以及信號處理和控制電路、接口電路、通信和電源于一體的完整微型機電系統。MEMS技術的目標是通過系統的微型化、集成化來探索具有新原理、新功能的元件和系統。MEMS的發展將極大地促進各類產品的袖珍化、微型化,成數量級的提高器件與系統的功能密度、信息密度與互聯密度,大幅度地節能、節材。它不僅可以降低機電系統的成本,而且還可以完成許多大尺寸機電系統無法完成的任務。例如用尖端直徑為5μm的微型鑷子可以夾起一個紅細胞;制造出3mm大小能夠開動的小汽車;可以在磁場中飛行的像蝴蝶大小的飛機等。MEMS技術的發展開辟了技術全新的領域和產業,具有許多傳統傳感器無法比擬的優點,因此在制造業、航空、航天、交通、通信、農業、生物醫學、環境監控、軍事、家庭以及幾乎人們接觸到的所有領域中都有著十分廣闊的應用前景。
微機械是機械技術與電子技術在納米尺度上相融合的產物。早在1959年就有科學家提出微型機械的設想,1962年第一個硅微型壓力傳感器問世。1987年美國加州大學伯克利分校研制出轉子直徑為60~120μm的硅微型靜電電動機,顯示出利用硅微加工工藝制作微小可動結構并與集成電路兼容制造微小系統的潛力。微機械技術有可能像20世紀的微電子技術那樣,在21世紀對世界科技、經濟發展和國防建設產生巨大的影響。近10年來,微機械的發展令人矚目。其特點如下:相當數量的微型元器件(微型結構、微型傳感器和微型執行器等)和微系統研究成功,體現了其現實的和潛在的應用價值;多種微型制造技術的發展,特別是半導體微細加工等技術已成為微系統的支撐技術;微型機電系統的研究需要多學科交叉的研究隊伍,微型機電系統技術是在微電子工藝的基礎上發展的多學科交叉的前沿研究領域,涉及電子工程、機械工程、材料工程、物理學、化學以及生物醫學等多種工程技術和科學。轉貼于
目前對微觀條件下的機械系統的運動規律,微小構件的物理特性和載荷作用下的力學行為等尚缺乏充分的認識,還沒有形成基于一定理論基礎之上的微系統設計理論與方法,因此只能憑經驗和試探的方法進行研究。微型機械系統研究中存在的關鍵科學問題有微系統的尺度效應、物理特性和生化特性等。微系統的研究正處于突破的前夜,是亟待深入研究的領域。
2.3 材料制備/零件制造一體化和加工新技術基礎
材料是人類進步的里程碑,是制造業和高技術發展的基礎。每一種重要新材料的成功制備和應用,都會推進物質文明,促進國家經濟實力和軍事實力的增強。21世紀中,世界將由資源消耗型的工業經濟向知識經濟轉變,要求材料和零件具有高的性能以及功能化、智能化的特性;要求材料和零件的設計實現定量化、數字化;要求材料和零件的制備快速、高效并實現二者一體化、集成化。材料和零件的數字化設計與擬實仿真優化是實現材料與零件的高效優質制備/制造及二者一體化、集成化制造的關鍵。一方面,通過計算機完成擬實仿真優化后可以減少材料制備與零件制造過程中的實驗性環節,獲得最佳的工藝方案,實現材料與零件的高效優質制備/制造;另一方面,根據不同材料性能的要求,如彈性模量、熱膨脹系數、電磁性能等,研究材料和零件的設計形式。進而結合傳統的去除材料式制造技術、增加材料式覆層技術等,研究多種材料組分的復合成形工藝技術。形成材料與零件的數字化制造理論、技術和方法,如快速成形技術采用材料逐漸增長的原理,突破了傳統的去材法和變形法機械加工的許多限制,加工過程不需要工具或模具,能迅速制造出任意復雜形狀又具有一定功能的三維實體模型或零件。
2.4 機械仿生制造
21世紀將是生命科學的世紀,機械科學和生命科學的深度融合將產生全新概念的產品(如智能仿生結構),開發出新工藝(如生長成形工藝)和開辟一系列的新產業,并為解決產品設計、制造過程和系統中一系列難題提供新的解決方法。這是一個極富創新和挑戰的前沿領域。
地球上的生物在漫長的進化中所積累的優良品性為解決人類制造活動中的各種難題提供了范例和指南。從生命現象中學習組織與運行復雜系統的方法和技巧,是今后解決目前制造業所面臨許多難題的一條有效出路。仿生制造指的是模仿生物器官的自組織、自愈合、自增長與自進化等功能結構和運行模式的一種制造系統與制造過程。如果說制造過程的機械化、自動化延伸了人類的體力,智能化延伸了人類的智力,那么,"仿生制造"則可以說延伸了人類自身的組織結構和進化過程。
仿生制造所涉及的科學問題是生物的"自組織"機制及其在制造系統中的應用問題。所謂"自組織"是指一個系統在其內在機制的驅動下,在組織結構和運行模式上不斷自我完善、從而提高對于環境適應能力的過程。仿生制造的"自組織"機制為自下而上的產品并行設計、制造工藝規程的自動生成、生產系統的動態重組以及產品和制造系統的自動趨優提供了理論基礎和實現條件。
仿生制造屬于制造科學和生命科學的"遠緣雜交",它將對21世紀的制造業產生巨大的影響。
仿生制造的研究內容目前有兩個方面:
2.4.1 面向生命的仿生制造
研究生命現象的一般規律和模型,例如人工生命、細胞自動機、生物的信息處理技巧、生物智能、生物型的組織結構和運行模式以及生物的進化和趨優機制等;
2.4.2 面向制造的仿生制造
研究仿生制造系統的自組織機制與方法,例如:基于充分信息共享的仿生設計原理,基于多自律單元協同的分布式控制和基于進化機制的尋優策略;研究仿生制造的概念體系及其基礎,例如:仿生空間的形式化描述及其信息映射關系,仿生系統及其演化過程的復雜度計量方法。
機械仿生與仿生制造是機械科學與生命科學、信息科學、材料科學等學科的高度融合,其研究內容包括生長成形工藝、仿生設計和制造系統、智能仿生機械和生物成形制造等。目前所做的研究工作大多屬前沿探索性的工作,具有鮮明的基礎研究的特點,如果抓住機遇研究下去,將可能產生革命性的突破。今后應關注的研究領域有生物加工技術、仿生制造系統、基于快速原型制造技術的組織工程學,以及與生物工程相關的關鍵技術基礎等。 3 現代制造技術的發展趨勢
20世紀90年代以來,世界各國都把制造技術的研究和開發作為國家的關鍵技術進行優先發展,如美國的先進制造技術計劃AMTP、日本的智能制造技術(IMS)國際合作計劃、韓國的高級現代技術國家計劃(G--7)、德國的制造2000計劃和歐共體的ESPRIT和BRITE-EURAM計劃。
隨著電子、信息等高新技術的不斷發展,市場需求個性化與多樣化,未來現代制造技術發展的總趨勢是向精密化、柔性化、網絡化、虛擬化、智能化、綠色集成化、全球化的方向發展。
當前現代制造技術的發展趨勢大致有以下九個方面:
(1) 信息技術、管理技術與工藝技術緊密結合,現代制造生產模式會獲得不斷發展。
(2) 設計技術與手段更現代化。
(3) 成型及制造技術精密化、制造過程實現低能耗。
(4) 新型特種加工方法的形成。
(5) 開發新一代超精密、超高速制造裝備。
(6) 加工工藝由技藝發展為工程科學。
(7) 實施無污染綠色制造。