前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇初中數學教案范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
教學建議
一、知識結構
二、重點、難點分析
本節教學的重點是掌握公式的結構特征及正確運用公式.難點是公式推導的理解及字母的廣泛含義.平方差公式是進一步學習完全平方公式、進行相關代數運算與變形的重要知識基礎.
1.平方差公式是由多項式乘法直接計算得出的:
與一般式多項式的乘法一樣,積的項數是多項式項數的積,即四項.合并同類項后僅得兩項.
2.這一公式的結構特征:左邊是兩個二項式相乘,這兩個二項式中有一項完全相同,另一項互為相反數;右邊是乘式中兩項的平方差,即相同項的平方與相反項的平方差.公式中的字母可以表示具體的數(正數和負數),也可以表示單項式或多項式等代數式.
只要符合公式的結構特征,就可運用這一公式.例如
在運用公式的過程中,有時需要變形,例如,變形為,兩個數就可以看清楚了.
3.關于平方差公式的特征,在學習時應注意:
(1)左邊是兩個二項式相乘,并且這兩上二項式中有一項完全相同,另一項互為相反數.
(2)右邊是乘式中兩項的平方差(相同項的平方減去相反項的平方).
(3)公式中的和可以是具體數,也可以是單項式或多項式.
(4)對于形如兩數和與這兩數差相乘,就可以運用上述公式來計算.
三、教法建議
1.可以將“兩個二項式相乘,積可能有幾項”的問題作為課題引入,目的是激發學生的學習興趣,使學生能在兩個二項式相乘其積可能為四項、三項、兩項中找出積為兩項的特征,上升到一定的理論認識,加以實踐檢驗,從而培養學生觀察、概括的能力.
2.通過學生自己的試算、觀察、發現、總結、歸納,得出為什么有的兩個二項式相乘,其積為兩項,因為其中兩項是兩個數的平方差,而另兩項恰是互為相反數,合并同類項時為零,即
(a+b)(a-b)=a2+ab-ab-b2=a2-b2.
這樣得出平方差公式,并且把這類乘法的實質講清楚了.
3.通過例題、練習與小結,教會學生如何正確應用平方差公式.這里特別要求學生注意公式的結構,教師可以用對應思想來加強對公式結構的理解和訓練,如計算(1+2x)(1-2x),
(1+2x)(1-2x)=12-(2x)2=1-4x2
(a+b)(a-b)=a2-b2.
這樣,學生就能正確應用公式進行計算,不容易出差錯.
另外,在計算中不一定用一種模式刻板地應用公式,可以結合以前學過的運算法則,經過變形后靈活應用公式,培養學生解題的靈活性.
教學目標
1.使學生理解和掌握平方差公式,并會用公式進行計算;
2.注意培養學生分析、綜合和抽象、概括以及運算能力.
教學重點和難點
重點:平方差公式的應用.
難點:用公式的結構特征判斷題目能否使用公式.
教學過程設計
一、師生共同研究平方差公式
我們已經學過了多項式的乘法,兩個二項式相乘,在合并同類項前應該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
讓學生動腦、動筆進行探討,并發表自己的見解.教師根據學生的回答,引導學生進一步思考:
兩個二項式相乘,乘式具備什么特征時,積才會是二項式?為什么具備這些特點的兩個二項式相乘,積會是兩項呢?而它們的積又有什么特征?
(當乘式是兩個數之和以及這兩個數之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現互為相反數的兩項,合并這兩項的結果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數的平方差)
繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
在此基礎上,讓學生用語言敘述公式.
二、運用舉例變式練習
例1計算(1+2x)(1-2x).
解:(1+2x)(1-2x)
=12-(2x)2
=1-4x2.
教師引導學生分析題目條件是否符合平方差公式特征,并讓學生說出本題中a,b分別表示什么.
例2計算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)
=(2a3+b2)(2a3-b2)
=(2a3)2-(b2)2
=4a6-b4.
教師引導學生發現,只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
課堂練習
運用平方差公式計算:
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3計算(-4a-1)(-4a+1).
讓學生在練習本上計算,教師巡視學生解題情況,讓采用不同解法的兩個學生進行板演.
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2-l2
=16a2-1.
解法2:(-4a-l)(-4a+l)
=(-4a)2-l
=16a2-1.
根據學生板演,教師指出兩種解法都很正確,解法1先用了提出負號的辦法,使兩乘式首項都變成正的,而后看出兩數的和與這兩數的差相乘的形式,應用平方差公式,寫出結果.解法2把-4a看成一個數,把1看成另一個數,直接寫出(-4a)2-l2后得出結果.采用解法2的同學比較注意平方差公式的特征,能看到問題的本質,運算簡捷.因此,我們在計算中,先要分析題目的數字特征,然后正確應用平方差公式,就能比較簡捷地得到答案.
課堂練習
1.口答下列各題:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.計算下列各題:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教師巡視學生練習情況,請不同解法的學生,或發生錯誤的學生板演,教師和學生一起分析解法.
三、小結
1.什么是平方差公式?
2.運用公式要注意什么?
(1)要符合公式特征才能運用平方差公式;
(2)有些式子表面不能應用公式,但實質能應用公式,要注意變形.
四、作業
1.運用平方差公式計算:
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);
2.計算:
教學目的
1.使學生理解分式的意義,會求使分式有意義的條件。
2.使學生掌握分式的基本性質并能用它將分式變形。
教學分析
重點:分式的意義及其基本性質。
難點:分式的變號法則。
教學過程
一、復習
1、什么是分式?
2、使分式有意義要有什么條件?
二、新授
分式的基本性質
我們知道,分數基本性質是:分數的分子與分母都乘以(或除以)同一個不等于零的數,分數的值不變。
分數的基本性質是約分、通分和化簡繁分數的理論根據。
分式也有類似的性質,就是分式的分子與分母都乘以(或除以)同一個不等于零的整式,分式的值不變。這個性質叫做分式的基本性質,用式子表示是:
其中M是不等于零的整式。
分式的基本性質是分式變號法則。通分,約分及化簡繁分式的理論依據。就是說,分式的基本性質是分式恒等變形的理論依據。
例1下列等式的右邊是怎樣從左邊得到的?
(1);(2).
解:(1)c≠0,x≠0,
,.
例2填空:
(1);(2).
解:(1)a≠0,
,即填a2+ab。
(2)x≠0,
,即填x。
注意:
(1)根據分式的意義,分數線代表除號,又起括號的作用。
(2)添括號法則:當括號前添“+”號,括號內各項的符號不變;當括號前添“—”號,括號內各項都變號。
課時安排:本課題約需3課時,分配如下:
三、練習練習:P63中練習1,2。
四、小結本節學習了分式的基本性質。
五、作業作業:P66中習題9.2A組1,2。
另:需要注意的問題
1.從回憶算術里分數的基本性質再用類比的方法得出分式的基本性質:
.
從形式上看,分數的基本性質和分式的基本性質同乎是一樣的,學生接受起來不會有什么困難,但是要學生真正理解和掌握,還需要進行更深入的分析和各種基本的訓練。
一、鉆研大綱和教材
教學大綱和教材是教學的依據。備課時對教材的鉆研要按照“通讀一重讀一細讀”的原則,把握住教材的系統性、科學性、思想性和可接受性。系統性是與前后章節有關系的教材的來龍去脈。科學性是指教材對數學語句、數學概念和定理等的科學敘述、論證等。思想性主要體現在數學內容中所包含的辯證唯物主義觀點在教學中要讓學生了解數學中的大量概念都有現實的模型,是從現實的具體事物中抽象出來的。查閱資料和吸取教學經驗認真查閱資料作為自己教學上的參考,備課就可以事半功倍。此外參與觀摩教學與示范教學,認真做好教學后記,有助于吸收經驗教訓。
二、明確教學目標和要求
教學目標和要求應考慮到下列幾個方面:教材的思想性體現在哪一方面,對基礎知識和基本技能、技巧應達到何種程度,提出何種水平的要求,如何為今后學習有關知識作準備,如何結合教材內容進行思想教育,著重培養學生的哪些能力等等。確定重點、難點和關鍵。教材的重點是指在整個教材體系或課題體系中處于重要地位和作用的內容,重點的確定也應“由大到小、由粗到細”。難點主要是指學生接受起來比較困難的知識點,在教學過程中,要注意分散難點,各個擊破。關鍵是指對掌握某一部分知識或解決某一問題能起決定性作用的內容。
三、備好習題
習題在數學教學中有著特殊重要的作用。若沒有必要的恰當的練習,學生不可能掌握所學的基礎知識,更不用說將知識轉化為能力。通過練習,還能夠及時發現和彌補教和學中的遺漏或不足,培養學生良好的學習習慣和品質。習題要按照由淺入深,由單一到綜合,難度要適中,題量要適度。在備課時,教師必須課前熟悉所教章節習題的解法,了解每個題目的作用、難易程度、重要程度,然后對學生可能犯的錯誤做出估計。要鼓勵學生一題多解。
四、確定課型和教學方法
任何一堂課都不會采用單一的教學方法,往往是多種教學方法的結合使用,要根據教學的具體內容,學生年齡特征、知識基礎和能力水平,制訂恰當教法。在教學中要不斷改進教學方法,堅持啟發式,反對注入式。要重視學生在獲取和運用知識過程中發展思維能力,在教學時應當注意數學概念、公式、定理、法則的提出過程,知識的形成、發展過程,解題思路的探索過程,解題方法和規律的概括過程,使學生在這些過程中展開思維,發展能力。準備模型與教具。為了提高教學質量和教學效率,要按照教學的需要和所教班級的實際情況,積極創造條件,課前應準備充足、合理的模型與教具。在初中數學教學中,特別在幾何教學中,模型與教具的作用非常突出。點、線、面、體的概念以及它們之間的位置和度量關系,光憑在黑板上畫圖和文字表述,對初學的人來說比較難以想象、不易弄清,通過模型與教具的演示,有利于學生完成從感性認識到理性認識的飛躍。同時在數學教學中還應適當采取一些投影、錄像以及計算機和輔助教學等教學手段。
第8課3.3去括號與添括號(3)
教學目的
1、使學生進一步掌握去括號與添括號法則。
2、使學生掌握去括號與添括號在整式加減中的應用。
教學分析
重點:熟練掌握去括號與添括號法則。
難點:添括號后,括號前是-號時,括到括號內的各項都要改變符號的問題。
突破:正確理解添括號與去括號法則,要把括號與括號前的符號看成整體。
教學過程
一、復習
1、去括號法則什么?
2、添括號法則什么?
3、化簡:y2+(x2+2xy-3y2)-(2x2-xy-2y2)
4、把多項式-a2-5ab+6b2-2a+3b-4二次項放在前面是+號的括號內,非二次項放在前面是-號的括號內。
二、新授
1、例1在下列各式的括號里,填上適當的項
(1)(-x-2y+3z)(x-2y-3z)
=[-2y-()][-2y+()]
(2)a2-4b2=(a2-2ab)+(-4b2)
分析:這是添括號的問題,先明確要求,第(1)題左邊第一個括號內的-x與3z應改變符號后放在右邊的前面是-號的括號內,而左邊第二個括號內的-x與3z無須變號放在右邊的前面是+號的括號內。第(2)題左邊沒有ab項,而右邊出現了-2ab項,先把左邊的多項式寫成a2-2ab+2ab-4b2的形式,然后前面二項一組,后面二項一組,根據添括號法則進行。
解:(1)x-3z,x-3z(2)2ab
*每小題解后,可以用去括號法則,從左到右,進行檢驗。
例2一個兩位數,個位數字是x,十位數字比個位數字大3。
(1)寫出這個兩位數人代數式;
(2)若把個位數字與十位數字對調,求新數比原數少多少?
解:(1)(x+3)+x=11x+3
(2)10x+x+3-[10(x+3)+x]
=10x+x+3-(10x+30+x)
=-27
即新兩位數比原來兩位數少27
例3某三角形的第一邊是3m+2n,第二邊比第一邊小m,又三角形的周長是6m+8n,求它的第三邊長。
分析:根據題意可求出第二邊的長,再把周長減去第一,二兩邊的和可得第三邊的長。
解:(6m+8n)-[(3m+2n)+(3m+2n-n)]
=(6m+8n)-(3m+2n+3m+2n-n)
=6m+8n-3m-2n-3m-2n+n
=m+4n
答:三角形的第三邊長是(m+4n)個長度單位。
三、練習P163:A:3。
四、小結
五、作業
一、素質教育目標
(一)知識教學點:認識形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c為常數)類型的方程,并會用直接開平方法解.
(二)能力訓練點:培養學生準確而簡潔的計算能力及抽象概括能力.
(三)德育滲透點:通過兩邊同時開平方,將2次方程轉化為一次方程,向學生滲透數學新知識的學習往往由未知(新知識)向已知(舊知識)轉化,這是研究數學問題常用的方法,化未知為已知.
二、教學重點、難點
1.教學重點:用直接開平方法解一元二次方程.
2.教學難點:(1)認清具有(ax+b)2=c(a≠0,c≥0,a,b,c為常數)這樣結構特點的一元二次方程適用于直接開平方法.(2)一元二次方程可能有兩個不相等的實數解,也可能有兩個相等的實數解,也可能無實數解.如:(ax+b)2=c(a≠0,a,b,c常數),當c>0時,有兩個不等的實數解,c=0時,有兩個相等的實數解,c<0時無實數解.
三、教學步驟
(一)明確目標
在初二代數“數的開方”這一章中,學習了平方根和開平方運算.“如果x2=a(a≠0),那么x就叫做a的平方根.”“求一個數平方根的運算叫做開平方運算”.正確理解這個概念,在本節課我們就可得到最簡單的一元二次方程x2=a的解法,在此基礎上,就可以解符合形如(ax+b)2=c(a,b,c常數,a≠0,c≥0)結構特點的一元二次方程,從而達到本節課的目的.
(二)整體感知
通過本節課的學習,使學生充分認識到:數學的新知識是建立在舊知識的基礎上,化未知為已知是研究數學問題的一種方法,本節課引進的直接開平方法是建立在初二代數中平方根及開平方運算的基礎上,可以說平方根的概念對初二代數和初三代數起到了承上啟下的作用.而直接開平方法又為一元二次方程的其他解法打下堅實的基礎,此法可以說起到一個拋磚引玉的作用.學生通過本節課的學習應深刻領會數學以舊引新的思維方法,在已學知識的基礎上開發學生的創新意識.
(三)重點、難點的學習及目標完成過程
1.復習提問
(1)什么叫整式方程?舉兩例,一元一次方程及一元二次方程的異同?
(2)平方根的概念及開平方運算?
2.引例:解方程x2-4=0.
解:移項,得x2=4.
兩邊開平方,得x=±2.
x1=2,x2=-2.
分析x2=4,一個數x的平方等于4,這個數x叫做4的平方根(或二次方根);據平方根的性質,一個正數有兩個平方根,它們互為相反數;所以這個數x為±2.求一個數平方根的運算叫做開平方.由此引出上例解一元二次方程的方法叫做直接開平方法.使學生體會到直接開平方法的實質是求一個數平方根的運算.
練習:教材P.8中1(1)(2)(3)(6).學生在練習、板演過程中充分體會直接開平方法的步驟以及蘊含著關于平方根的一些概念.
3.例1解方程9x2-16=0.
解:移項,得:9x2=16,
此例題是在引例的基礎上將二次項系數由1變為9,由此增加將二次項系數變為1的步驟.此題解法教師板書,學生回答,再次強化解題
負根.
練習:教材P.8中1(4)(5)(7)(8).
例2解方程(x+3)2=2.
分析:把x+3看成一個整體y.
例2把引例中的x變為x+3,反之就應把例2中的x+3看成一個整體,
兩邊同時開平方,將二次方程轉化為兩個一次方程,便求得方程的兩個解.可以說:利用平方根的概念,通過兩邊開平方,達到降次的目的,化未知為已知,體現一種轉化的思想.
練習:教材P.8中2,此組練習更重要的是體會方程的左邊不是未知數的平方,而是含有未知數的代數式的平方,而右邊是個非負實數,采用直接開平方法便可以求解.
例3解方程(2-x)2-81=0.
解法(一)
移項,得:(2-x)2=81.
兩邊開平方,得:2-x=±9
2-x=9或2-x=-9.
x1=-7,x2=11.
解法(二)
(2-x)2=(x-2)2,
原方程可變形,得(x-2)2=81.
兩邊開平方,得x-2=±9.
x-2=9或x-2=-9.
x1=11,x2=-7.
比較兩種方法,方法(二)較簡單,不易出錯.在解方程的過程中,要注意方程的結構特點,進行靈活適當的變換,擇其簡捷的方法,達到又快又準地求出方程解的目的.
練習:解下列方程:
(1)(1-x)2-18=0;(2)(2-x)2=4;
在實數范圍內解一元二次方程,要求出滿足這個方程的所有實數根,提醒學生注意不要丟掉負根,例x2+36=0,由于適合這個方程的實數x不存在,因為負數沒有平方根,所以原方程無實數根.-x2=0,適合這個方程的根有兩個,都是零.由此滲透方程根的存在情況.以上在教師恰當語言的引導下,由學生得出結論,培養學生善于思考的習慣和探索問題的精神.
那么具有怎樣結構特點的一元二次方程用直接開平方法來解比較簡單呢?啟發引導學生,抽象概括出方程的結構:(ax+b)2=c(a,b,c為常數,a≠0,c≥0),即方程的一邊是含有未知數的一次式的平方,另一邊是非負實數.
(四)總結、擴展
引導學生進行本節課的小節.
1.如果一元二次方程的一邊是含有未知數的一次式的平方,另一邊是一個非負常數,便可用直接開平方法來解.如(ax+b)2=c(a,b,c為常數,a≠0,c≥0).
2.平方根的概念為直接開平方法的引入奠定了基礎,同時直接開平方法也為其它一元二次方程的解法起了一個拋磚引玉的作用.兩邊開平方實際上是實現方程由2次轉化為一次,實現了由未知向已知的轉化.由高次向低次的轉化,是高次方程解法的一種根本途徑.
3.一元二次方程可能有兩個不同的實數解,也可能有兩個相同的實數解,也可能無實數解.
四、布置作業
1.教材P.15中A1、2、
2、P10練習1、2;
P.16中B1、(學有余力的學生做).
五、板書設計
12.1用公式解一元二次方程(二)
引例:解方程x2-4=0例1解方程9x2-16=0
解:…………
……例2解方程(x+3)2=2
此種解一元二次方程的方法稱為直接開平方法
形如(ax+b)2=c(a,b,
c為常數,a≠0,c≥0)可用直接開平方法
六、部分習題參考答案
教材P.15A1
以上(5)改為(3)(6)改為(4),去掉(7)(8)