前言:本站為你精心整理了數學史教學范文,希望能為你的創作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。
一、學習數學史有利于培養學生正確的數學思維方式
現行的數學教材一般都是經過了反復推敲的,語言十分精練簡潔。為了保持了知識的系統性,把教學內容按定義、定理、證明、推論、例題的順序編排,缺乏自然的思維方式,對數學知識的內涵,以及相應知識的創造過程介紹也偏少。雖利于學生接受知識,但很容易使學生產生數學知識就是先有定義,接著總結出性質、定理,然后用來解決問題的錯誤觀點。所以,在教學與學習的過程中存在著這樣一個矛盾:一方面,教育者為了讓學生能夠更快更好的掌握數學知識,將知識系統化;另一方面,系統化的知識無法讓學生了解到知識大都是經過問題、猜想、論證、檢驗、完善,一步一步成熟起來的。影響了學生正確數學思維方式的形成。
數學史的學習有利于緩解這個矛盾。通過講解一些有關的數學歷史,讓學生在學習系統的數學知識的同時,對數學知識的產生過程,有一個比較清晰的認識,從而培養學生正確的數學思維方式。這樣的例子很多,比如說微積分的產生:傳統的歐式幾何的演繹體系是產生不了微積分的,它是牛頓、萊布尼茲在古希臘的“窮竭法”、“求拋物線弓形面積”等思想的啟發下為了滿足第一次工業革命的需要創造得到的,產生的初期對“無窮小”的定義比較含糊,也不像我們現在看到的這樣嚴密,在數學家們的不斷補充、完善下,經過幾十年才逐步成熟起來的。
數學史的學習可以引導學生形成一種探索與研究的習慣,去發現和認識在一個問題從產生到解決的過程中,真正創造了些什么,哪些思想、方法代表著該內容相對于以往內容的實質性進步。對這種創造過程的了解,可以使學生體會到一種活的、真正的數學思維過程,有利于學生對一些數學問題形成更深刻的認識,了解數學知識的現實來源和應用,而不是單純地接受教師傳授的知識,從而可以在這種不斷學習,不斷探索,不斷研究的過程中逐步形成正確的數學思維方式。
二、學習數學史可以幫助學生認識數學、形成正確的數學觀
學習一門學科首先要弄清楚這是一門怎樣的學科,《標準》明確提出要使學生“初步了解數學產生與發展的過程,體會數學對人類文明發展的作用”,而現階段高中學生對數學的看法大都停留在感性的層面上──枯燥、難學。數學的本質特征是什么?當今數學究竟發展到了哪個階段?在科學中的地位如何?與其它學科有什么聯系?這些問題大都不被學生全面了解,而從數學史中可以找到這些問題的答案。
日本數學家藤天宏教授在第九次國際數學教育大會報告中指出,人類歷史上有四個數學高峰:第一個是古希臘的演繹數學時期,它代表了作為科學形態的數學的誕生,是人類“理性思維”的第一個重大勝利;第二個是牛頓-萊布尼茲的微積分時期,它為了滿足工業革命的需要而產生,在力學、光學、工程技術領域獲得巨大成功;第三個是希爾伯特為代表的形式主義公理化時期;第四個是以計算機技術為標志的新數學時期,我們現在就處在這個時期。而數學歷史上的三大危機分別是古希臘時期的不可公度量,17、18世紀微積分基礎的爭論和20世紀初的集合論悖論,它同前三個高峰有著驚人的密切聯系,這種聯系絕不是偶然,它是數學作為一門追求完美的科學的必然。學生可以從這種聯系中發現數學追求的是清晰、準確、嚴密,不允許有任何雜亂,不允許有任何含糊,這時候學生就很容易認識到數學的三大基本特征──抽象性、嚴謹性和廣泛應用性了。
同時,介紹必要的數學史知識可以使學生在平時的學習中對所學問題的背景產生更加深入的理解,認識到數學絕不是孤立的,它與其他很多學科都關系密切,甚至是很多學科的基礎和生長點,對人類文明的發展起著巨大的作用。從數學史上看,數學和天文學一直都關系密切,海王星的發現過程就是一個很好的例子;它與物理學也密不可分,牛頓、笛卡兒等人既是著名的數學家也是著名的物理學家。在我們所處的新數學時期,數學(不僅僅是自然科學)逐步進入社會科學領域,發揮著意想不到的作用,可以說一切高技術的背后都有某種數學技術支持,數學技術已經成為知識經濟時代的一個重要特征。這些認識對于一個學習數學十余年的高中生來說是很有必要,也是必不可少的。
三、學習數學史有利于培養學生對數學的興趣,激發學習數學的動機
動機是激勵人、推動人去行動的一種力量,從心理學的觀點講,動機可分為兩個部分;人的好奇心、求知欲、興趣、愛好構成了有利于創造的內部動機;社會責任感構成了有利于創造的外部動機。興趣是最好的動機。在日本中學生奪取國際IEA調查總分第一名的同時,卻發現日本學生不喜歡數學的比例也是第一,這說明他們的好成績是在社會、家長、學校的壓力下獲得的。中國的情況如何呢?尚無全面的報道,但河南省新鄉市四所中學的高中生學習數學情況的調查發現:“我不喜歡數學,但為了高考,我必須學好數學”的學生占被調查者的比例高達62.21%,而對數學“很感興趣”的只有23.12%。可見目前中學生的學習動機不明確,對數學的興趣也很不夠,這些都極大地影響了學習數學的效果。但這并不是因為數學本身無趣,而是它被我們的教學所忽視了。在數學教育中適當結合數學史有利于培養學生對數學的興趣,克服動機因素的消極傾向。
數學史中有很多能夠培養學生學習興趣的內容,主要有這幾個方面:一是與數學有關的小游戲,例如巧拿火柴棒、幻方、商人過河問題等,它們有很強的可操作性,作為課堂活動或是課后研究都可以達到很好的效果。二是一些歷史上的數學名題,例如七橋問題、哥德巴赫猜想等,它們往往有生動的文化背景,也容易引起學生的興趣。還有一些著名數學家的生平、軼事,比如說一些年輕的數學家成材的故事,《標準》中提到的“從阿貝爾到伽羅瓦”,阿貝爾22歲證明一般五次以上代數方程不存在求根公式,伽羅瓦創建群論的時候只有18歲。還有法國數學家帕斯卡,16歲成為射影幾何的奠基人之一,19歲發明原始計算器;德國數學家高斯19歲解決正多邊形作圖的判定問題,20歲證明代數基本定理,24歲出版影響整個19世紀數論發展、至今仍相當重要的《算術研究》;還有的是許多出生貧窮卑微的數學家通過自己的艱苦努力,最終在的數學研究上有驕人成績的例子,如19世紀的大幾何學家施泰納出身農家自幼務農,直到14歲還沒有學過寫字,18歲才正式開始讀書,后來靠做私人教師謀生,經過艱苦努力,終于在30歲時在數學上做出重要工作,一舉成名。如果在教學中加入這些學生感興趣又有知識性的內容,消除學生對數學的恐懼感,增加數學的吸引力,數學學習也許就不再是被迫無奈的了。
四、學習數學史為德育教育提供了舞臺
在《標準》的要求下,德育教育已經不是像以前那樣主要是政治、語文、歷史這些學科的事了,數學史內容的加入使數學教育有更強大的德育教育功能,我們從下幾個方面來探討一下。
首先,學習數學史可以對學生進行愛國主義教育。現行的中學教材講的大都是外國的數學成就,對我國在數學史上的貢獻提得很少,其實中國數學有著光輝的傳統,有劉徽、祖沖之、祖暅、楊輝、秦九韶、李冶、朱世杰等一批優秀的數學家,有中國剩余定理、祖暅公理、“割圓術”等具有世界影響的數學成就,對其中很多問題的研究也比國外早很多年。《標準》中“數學史選講”專題3就是“中國古代數學瑰寶”,提到《九章算術》、“孫子定理”這些有代表意義的中國古代數學成就。
然而,現階段愛國主義教育又不能只停留在感嘆我國古代數學的輝煌上。從明代以后中國數學逐漸落后于西方,20世紀初,中國數學家踏上了學習并趕超西方先進數學的艱巨歷程。《標準》中“數學史選講”專題11──“中國現代數學的發展”也提到要介紹“現代中國數學家奮發拼搏,趕超世界數學先進水平的光輝歷程”。在新時代的要求下,除了增強學生的民族自豪感之外,還應該培養學生的“國際意識”,讓學生認識到愛國主義不是體現在“以己之長,說人之短”上,在科學發現上全人類應該相互學習、互相借鑒、共同提高,我們要尊重外國的數學成就,虛心的學習,“洋為中用”。
其次,學習數學史可以引導學生學習數學家的優秀品質。任何一門科學的前進和發展的道路都不是平坦的,無理數的發現,非歐幾何的創立,微積分的發現等等這些例子都說明了這一點。數學家們或是堅持真理、不畏權威,或是堅持不懈、努力追求,很多人甚至付出畢生的努力。阿基米德在敵人破城而入危及生命的關頭仍沉浸在數學研究之中,為的是“我不能留給后人一條沒有證完的定理”。歐拉31歲右眼失明,晚年視力極差最終雙目失明,但他仍以堅強的毅力繼續研究,他的論文多而且長,以致在他去世之后的10年內,他的論文仍在科學院的院刊上持續發表。對那些在平時學習中遇到稍微繁瑣的計算和稍微復雜的證明就打退堂鼓的學生來說,介紹這樣一些大數學家在遭遇挫折時又是如何執著追求的故事,對于他們正確看待學習過程中遇到的困難、樹立學習數學的信心會產生重要的作用。
最后,學習數學史可以提高學生的美學修養。數學是美的,無數數學家都為這種數學的美所折服。能欣賞美的事物是人的一個基本素質,數學史的學習可以引導學生領悟數學美。很多著名的數學定理、原理都閃現著美學的光輝。例如畢達哥拉斯定理(勾股定理)是初等數學中大家都十分熟悉的一個非常簡潔而深刻的定理,有著極為廣泛的應用。兩千多年來,它激起了無數人對數學的興趣,意大利著名畫家達芬奇、印度國王Bhaskara、美國第20任總統Carfield等都給出過它的證明。1940年,美國數學家盧米斯在所著《畢達哥拉斯命題藝術》的第二版中收集了它的370種證明,充分展現了這個定理的無窮魅力。黃金分割同樣十分優美和充滿魅力,早在公元前6世紀它就為畢達哥拉斯學派所研究,近代以來人們又驚訝地發現,它與著名的斐波那契數列有著十分密切的內在聯系。同時,在感嘆和欣賞幾何圖形的對稱美、尺規作圖的簡單美、體積三角公式的統一美、非歐幾何的奇異美等時,可以形成對數學良好的情感體驗,數學素養和審美素質也得到了提高,這是德育教育一個新的突破口。
【參考文獻】湖北大學數學與計算機科學學院陳慧玲本文是全國高師院校數學教育研究會2004年年會交流論文
【1】中華人民共和國教育部制訂普通高中數學課程標準(實驗)人民教育出版社2003
【2】張奠宙李士锜李俊編著數學教育學導論高等教育出版社2003
【3】李文林編數學史概論高等教育出版社2002
【4】張楚廷著教育部高等教育司組編數學文化高等教育出版社1999
【5】趙鴻濤李華軒高中生數學學習情況的調查新鄉教育學院學報2003年04期
【摘要】我國的數學教學一直注重形式化的演繹數學思維的訓練,而忽視了培養學生對數學作為一門科學的思想體系、文化內涵和美學價值的認識。《普通高中數學課程標準(實驗)》增加的數學史內容,彌補了這方面的不足。本文旨在探討它的教育功能是如何體現的。
【關鍵字】數學史數學觀教育功能