前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇高分子材料的應用特點范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
高分子的概念
首先,什么是高分子?從化學角度來定義,高分子是由分子量很大的長鏈分子所組成,而每個分子鏈都是由共價鍵聯合的成百上千的一種或多種小分子構造而成。我們日常所接觸到的大分子、聚合物以及高聚物都可以稱為高分子。高分子通常有如下兩個特點:1.高分子的分子量很高,其相對分子量為1萬~100萬,很高的分子量也賦予了高分子材料很高的機械強度,從而決定了它們具有很好的實際應用價值。2.高分子的結構千變萬化,一般材料的性能是由材料的結構所決定的,我們可以根據實際需求,通過結構設計等方法制出不同性能的高分子材料。
高分子材料發展歷史
高分子一詞的產生不足一百年,最早于1922年由著名德國化學家赫爾曼·施陶丁格提出,但其應用卻已有幾千年的歷史。從人類最開始利用蠶絲、棉、毛等織成織物,到后來用木材、棉、麻等造紙,人類在利用這些天然高分子作為生活資料和生產資料中不斷進步。到了19世紀30年代,天然高分子衍生物即改性或半合成天然高分子材料被使用,其中典型代表就是硫化橡膠和硝化纖維素的使用。1907年出現合成高分子——酚醛樹脂,標志合成高分子時代的到來,從此,合成高分子材料逐漸在諸多領域大放異彩。如今,高分子材料已經成為社會進步中不可或缺的基石,在日常生活、國防工業、科技發展等各個領域占有舉重輕重的地位。
高分子材料分類
如上所述,高分子按來源可以分為天然高分子、天然高分子衍生物、合成高分子三大類。天然高分子是存在于動物、植物及生物體內的天然物質,如植物中的淀粉、纖維素、棉、麻等以及動物中的蛋白質、糖類、毛發等等。天然高分子可通過化學改性成天然高分子衍生物,從而改變其加工性能和使用性能,例如硫化橡膠、硝酸纖維素等。合成高分子是指自然界中不存在,通過化學方法合成的高分子,如我們常見的聚乙烯、聚氯乙烯、尼龍等等。與天然高分子材料相比,合成高分子材料通常具有較好的力學性能、低密度、耐腐蝕性、耐磨性等一系列優異的性能。
此外,高分子材料根據其應用功能又可以分為通用高分子材料及功能高分子材料。
通用高分子材料是指能夠通過大規模工業化生產,并普遍應用于建筑、農業、交通運輸、電子工業等國民經濟主要領域和人們日常生活的高分子材料,如塑料、橡膠、纖維、粘合劑、涂料等。通用高分子材料給人類生活帶來了極大的改變。以使用最多的塑料、橡膠和纖維為例,塑料的使用已經滲透到我們生活的方方面面,從日常食品、化妝品、藥瓶等包裝,到建材管道、電子器件、家居裝修及日常用品,再到汽車、火車裝飾甚至航天設施。橡膠主要是用來制作輪胎,除此之外,由橡膠作為原材料制作的密封制品(密封條、橡膠圈等)、膠管、傳動帶及安全制品等在汽車、航空航天及國防裝置中都發揮著極其重要的作用。合成纖維的出現首先解決了天然纖維種植的制約,隨后隨著技術的進步,從我們常穿的的確良(滌綸)、尼龍(錦綸)等,到消防員所穿的聚酰亞胺防火服,以及防彈衣中的碳纖維都屬于合成纖維。合成纖維性能優異,能夠滿足不同領域需求的纖維得到廣泛應用。
功能高分子材料一般是指具有傳遞、轉換或貯存物質、能量和信息作用的高分子及其復合材料。其突出特點在于其特殊的光、電、磁、催化等性能,具體如光敏高分子材料、導電高分子材料、鐵磁性高分子材料以及生物高分子材料。因其功能的獨特性,功能高分子材料在諸多領域得到廣泛應用,并具有巨大的發展潛力。如光導高分子材料用于靜電復印、噴墨打印等領域,極大地提高了辦公效率;導電功能高分子材料用于電池、電路、精密儀器等,大大提高了傳導效率;高分子分離膜在水污染處理、物質分離等環境領域的應用,降低了生產處理成本,利于環境保護;最后還有與生命息息相關的生物醫用功能高分子材料,在人工器官、外科修復以及藥物及藥物釋放等方面,獲得越來越多的關注。
高分子材料的未來發展
關鍵詞:高分子材料;成型;控制
0 前言
作為一種實際應用效果良好的材料,高分子材料在近期得到了廣泛的應用。研究高分子材料成型及控制,能夠更好地提升其實踐水平,從而有效保證高分子材料的整體效果。本文從概述高分子材料的相關內容著手本課題的研究。
1 概述
現階段我國在高分子合成材料方面取得了很大的進步,相關行業的生產活動也在不斷發展壯大,高分子材料成型加工技術被運用與汽車等工業生產活動之中。高分子合成材料行業已經發展成為我國的重要經濟類產業,是國民經濟的重要組成部分。由于高分子材料的特性,必須加強對高分子材料的系統性研究,了解高分子材料的成型過程以及控制對策,為高分子材料工業的發展提供依據,是我國科研工作的重要任務。高分子材料成型加工技術屬于一門重要的科學,國內外著名的專家學者都對其予以高度關注,將與化學、物理等方面的專業內容融入到高分子材料成型加工技術中,為研究工作的開展提供科學依據。
2 高分子材料的基本成型方法
2.1 擠出成型
高分子材料的基礎成型是通過螺桿旋轉加壓的方式,不間斷的將已經成型的材料由有機筒擠出來,擠入到機頭中去,熔融物料通過機頭口模成型為與口模形狀相仿的型坯,然后借助相應的牽引工具把成型的材料不斷的在模具中提取出來,并對其進行冷卻處理,進而得到相應的形狀。擠出成型是一項系統性的工程,由入料、塑化、成型以及定性等過程,每個環節都對高分子材料的成型起到關鍵性的作用。
2.2 吹塑成型
吹塑就是通過中空吹塑的方式來實現的,主要是依靠氣體的壓力,來促使處于閉合狀態的熱熔型胚發生鼓脹,進而形成中空制品的技術過程。吹塑成型是高分子材料成型的另一種主要方式,具有發展快、效率高的特點。吹塑成型的主要加工模式是擠出、注塑和拉伸,是目前常用的三種吹塑方法。
2.3 注塑成型
一般情況下,我國高分子材料加工行業普遍采用的成型方法是注塑成型,其面對的生產對象大都是空間感強、立體式的材料形狀,在塑料生產方面具有諸多的優勢,受到了企業的廣泛關注和應用。注塑成型方式應用的范圍相對較廣,成型操作所需時間短、多樣的花色、生產效率高等等優點,是高分子材料成型最具實用性的方法。
3 現階段高分子材料成型技術的優化與創新分析
3.1 聚合物動態反應加工技術及設備
現階段,通過對國內外高分子材料成型技術的研究,大都采用反應加工設備來開展工作,但是,該反應加工設備的原理是在原有的混合、混煉設備上進行完善與優化所生產的產品,其還存在多方面的問題,處于不成熟階段,傳熱、混煉過程等都是其中的典型問題。另一方面,設備引進和使用投資大、能耗高,噪音污染嚴重、密封困難。
利用聚合物動態反應加工技術及設備來創新與優化高分子材料成型加工工作,相較于傳統的技術有了很大的進步,加工原理以及設備的組成都有所不同。此種技術的應用,其核心內容是將電磁場條件下的機械振動廠投入到高分子材料的機頭擠出操作中,能夠實現對化學反應、生成物的聚合結構、制品的各項變化等的控制,起到了良好的應用效果。
3.2 新材料制備新技術
信息與科學技術的不斷發展,在各個領域都得到了廣泛的應用,為了優化和升級高分子材料成型加工技術,可將信息存儲光盤應用到加工技術中,利用盤基來直接實現反應成型技術的構建,整個成型技術形成動態式、鏈條式的操作流程,樹脂的生產與加工、儲備與運送,再到盤基的成型,探索出酯交換的鏈條式生產與加工技術,能有效控制能源的使用率、提高成品的質量。
新材料制備新技術的出現,為高分子材料加工行業的發展提供了發展契機,動態全硫化制備技術也是其中的代表,是我國科學技術不斷發展的重要體現,新技術的應用與振動力場具有密切的聯系,可以更為直觀有效的控制硫化的整個過程,能很好的應對硫化過程中所遇到與相態有關的反轉類問題。針對此項技術,科學家應致力于研究與技術相匹配的更具全面化的設備,為我國高分子材料加工水平提供技術支撐。
4 高分子材料在成型過程中的控制
近年來,我國由于綜合國力的提升,在科學領域取得了一項又一項矚目的成績,其中高分子材料在成型過程中的控制是研究的主要課題之一。高分子材料在一定條件下極易發生結構上變化,溫度、外力等都是影響高分子材料所形成的聚合物的結構與形態,同時在外部條件的影響下,高分子材料還會發生聚集形態上的變化,一系列的問題都是現階段科學家研究的主要問題。通過不斷的研究,科學家得出了一系列的成果,實現對新型高分子材料的開發,形成了多元化的高分子材料群體,并投入實際的應用之中,促進了高分子材料工業的發展。通過研究,科學家發現,大部分聚合物多相體系存在不相溶的現象,制約著成型過程中的控制工作,為了改善此類情況,可以適當的融入第三組分。在聚合物生產與加工的過程中,所研制出的產品會處于溫度不穩定的環境中,由于制品極易受到溫度的影響而發生形態和結構上的變化,進而影響其性能,應加強對制品溫度的控制。由于制品的溫度會隨著時間推移為發生動態上的變化,可見,了解在非等溫場條件下,聚合物、共混物制品溫度與時間的變化關系是非常關鍵的,并對變化的規律進行總結,可為成型過程中的形態結構控制提供依據。
5 結語
本文以高分子材料成型方法和控制進行了具體性的分析,我們可以發現,高分子材料的多項優勢決定了其在實踐中的應用地位,有關人員應該從其客觀實際需求出發,充分利用自身有利條件,研究制定最為符合實際的成型及控制實施方案。
參考文獻:
[1]楊帆.淺析高分子材料成型加工技術[J].應用科學,2011(08):66-68.
【關鍵詞】 高分子材料 可降解 循環利用
1 生物可降解高分子材料的含義及降解機理
生物可降解高分子材料是指在一定的時間和一定的條件下,能被微生物或其分泌物在酶或化學分解作用下發生降解的高分子材料。生物可降解的機理大致有以下三種方式:生物的細胞增長使物質發生機械性破壞;微生物對聚合物作用產生新的物質;酶的直接作用,即微生物侵蝕高聚物從而導致裂解。一般認為,高分子材料的生物可降解是經過兩個過程進行的。首先,微生物向體外分泌水解酶和材料表面結合,通過水解切斷高分子鏈,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物攝入人體內,經過種種的代謝路線,合成為微生物體物或轉化為微生物活動的能量,最終都轉化為水和二氧化碳。因此,生物可降解并非單一機理,而是一個復雜的生物物理、生物化學協同作用,相互促進的物理化學過程。到目前為止,有關生物可降解的機理尚未完全闡述清楚。除了生物可降解外,高分子材料在機體內的降解還被描述為生物吸收、生物侵蝕及生物劣化等。生物可降解高分子材料的降解除與材料本身性能有關外,還與材料溫度、酶、PH值、微生物等外部環境有關。
2 生物可降解高分子材料的類型
按材料來源,生物可降解高分子材料可分為天然高分子和人工合成高分子兩大類。按用途分類,有醫用和非醫用生物可降解高分子材料兩大類。按合成方法可分為如下幾種類型。
2.1 微生物生產型
通過微生物合成的高分子物質。這類高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染環境的生物可降解塑料。
2.2 合成高分子型
脂肪族聚酯具有較好的生物可降解性。但其熔點低,強度及耐熱性差,無法應用。芳香族聚酯(PET)和聚酰胺的熔點較高,強度好,是應用價值很高的工程塑料,但沒有生物可降解性。將脂肪族和芳香族聚酯(或聚酰胺)制成一定結構的共聚物,這種共聚物具有良好的性能,又有一定的生物可降解性。
2.3 天然高分子型
自然界中存在的纖維素、甲殼素和木質素等均屬可降解天然高分子,這些高分子可被微生物完全降解,但因纖維素等存在物理性能上的不足,由其單獨制成的薄膜的耐水性、強度均達不到要求,因此,它大多與其它高分子,如由甲殼質制得的脫乙酰基多糖等共同混制。
2.4 摻混型
在沒有生物可降解的高分子材料中,摻混一定量的生物可降解的高分子化合物,使所得產品具有相當程度的生物可降解性,這就制成了摻合型生物可降解高分子材料,但這種材料不能完全生物可降解。
3 生物可降解高分子材料的研發
3.1 傳統方法
傳統利用生物可降解高分子材料的方法主要包括:天然高分子的改造法、化學合成法和微生物發酵法等。(1)天然高分子的改造法。通過化學修飾和共混等方法,對自然界中存在大量的多糖類高分子,如淀粉、纖維素、甲殼素等能被生物可降解的天然高分子進行改性,可以合成生物可降解高分子材料。此法雖然原料充足,但一般不易成型加工,而且產量小,限制了它們的應用。②化學合成法。模擬天然高分子的化學結構,從簡單的小分子出發制備分子鏈上含有酯基、酰胺基、肽基的聚合物,這些高分子化合物結構單元中含有易被生物可降解的化學結構或是在高分子鏈中嵌入易生物可降解的鏈段。化學合成法反應條件苛刻,副產品多,工藝復雜,成本較高。(2)微生物發酵法。許多生物能以某些有機物為碳源,通過代謝分泌出聚酯或聚糖類高分子。但利用微生物發酵法合成產物的分離有一定困難,且仍有一些副產品。
3.2 酶促合成
用酶促法合成生物可降解高分子材料,得益于非水酶學的發展,酶在有機介質中表現出了與其在水溶液中不同的性質,并擁有了催化一些特殊反應的能力,從而顯示出了許多水相中所沒有的特點。
3.3 酶促合成法與化學合成法結合使用
酶促合成法具有高的位置及立體選擇性,而化學聚合則能有效的提高聚合物的分子量,因此,為了提高聚合效率,許多研究者已開始用酶促法與化學法聯合使用來合成生物可降解高分子材料。
4 結語
隨著高分子材料合成與加工的技術進步,生物可降解高分子材料在各行業得到廣泛、深入的應用。生物可降解高分子材料助劑、樹脂原料和加工機械一起組成了生物可降解高分子加工的三大基本要素。此外,加工工藝水平、配方技術以及相關配套服務設施也成為完美展現制品性能的不可或缺的因素。我國生物可降解高分子材料工業起步較晚,發展遲緩,難以適應目前的發展趨勢,必須借助行業發展,探索一條具有中國特色的工業之路。在消化、吸收、仿制國外先進品種和技術的基礎上,針對不同行業要求和特點,開發出高效、多功能、復合化、低(無)毒、低(無)污染、專用化的生物可降解高分子品種,提高規模化生產和管理能力,改變目前行業規模小、品種少、性能老化且雷同、針對性(專用性)差、性能價格比明顯低于國外同類產品、創新能力低下、污染嚴重、無序競爭的局面,一些新型功能的生物可降解高分子材料的發展時間不長,消費量較低,卻帶來了產業新的突破點和增長點,豐富完善了整個體系,其高技術含量和巨大的增幅顯示了強大的生命力,創造一個投入產出比明顯高于其他化工產品的新產業。
關鍵詞:高分子材料;化工材料;發展現狀
我國自上世紀80年代以來,開始致力于高分子化工材料的研發,并且將高分子化工材料用于多種領域,滿足了節能減排、高性能高科技等現代社會發展的要求。除了本文主要介紹三種材料以外,我國在烯類單體聚合、a―烯烴的聚合、乙烯基單體的光聚合與光刻膠等方面也取得很大的研究成果,隨著現代科技的發展以及社會發展的進一步需求,高分子化工材料將得到進一步的開發研究,并廣泛的應用于農業、工業、醫學、生物、能源等領域。高分子智能材料已經成為材料科學發展的一個重要研究領域,全世界各個國家科學家都在為此作不懈的努力。從人類歷史發展來看,任何一種重要材料的發明和利用,都能夠把人類改造自然,創造社會的能力提高到一個新的高度,并給社會生產力和人類生產生活帶來巨大的影響,使人類的物質文明建設和精神文明建設共同向前推進一大步。所以可以肯定的說,未來將會有更多更好更實用的智能材料出現在我們的面前。
一、高分子材料概念描述
所謂高分子材料是指由許多重復單元共價連接而成的,分子量很大的一類分子所組成的相關聚合物,并且具有粘彈性。高分子材料正在向以下幾方面發展:高功能化,高性能化,復合化,精細化和智能化。鑒于此,我國的高分子材料在進一步開發通用的基礎上,應該重點發展高分子材料品種、提高技術水平、擴大生產以進一步滿足市場需要。天然高分子是存在于動物、植物及生物體內的高分子物質,可分為天然纖維、天然樹脂、天然橡膠、動物膠等。合成高分子材料主要是指塑料、合成橡膠和合成纖維三大合成材料,此外還包括膠黏劑、涂料以及各種功能性高分子材料。合成高分子材料具有天然高分子材料所沒有的或較為優越的性能,較小的密度、較高的力學、耐磨性、耐腐蝕性、電絕緣性等。
二、高分子材料的應用分析
(一)聚烯烴材料
聚烯烴是高分子化工材料中用量最大的,也是應用范圍最廣的一種,主要在汽車、建筑、家電等領域得到廣泛的應用。聚烯烴是烯烴的聚合物,是由乙烯、丙烯1-丁烯、1-戊烯、1-己烯、1-辛烯、4-甲基-1-戊烯等α-烯烴以及某些環烯烴單獨聚合或共聚合而得到的一類熱塑性樹脂的總稱,主要通過高壓聚合或者低壓聚合如溶液法、漿液法等方法生產合成,主要品種有聚乙烯以及以乙烯為基礎的一些共聚物、聚丙烯以及以聚丙烯為基礎的丙烯共聚物。具有容易加工、綜合性能良好、原料豐富,價格低廉等優點。目前,各研究機構正在研究使用過渡金屬做催化劑,進行各類烯烴的聚合。近年來,隨著節能減排、低碳經濟以及可持續發展思想的深入,聚烯烴的合金化、高性能化和多樣化成為研究的方向和重點。
(二)高分子智能材料
高分子智能材料是通過有機和合成的方法,使無生命的有機材料變得具有生物功能的一種材料。其功能可隨外界條件的變化而有意識地調節、修飾和修復。形狀記憶高分子材料是指在一定條件下賦予高分子材料的起始裝態,當外部條件發生改變時,它可以改變成相應地形狀,并能固定其形態。當外部條件再次發生改變時,智能高分子材料以特定的規律和方式再一次發生變化并恢復至起始態。從而完成從起始記憶態到固定變形態再到恢復起始態的循環過程。自行調溫調光的新型建筑材料,成分是由水和聚合物構成的。在低溫時聚合物是成串排列的,為透明狀,能夠透過90%的光線。加熱時,這種聚合物就以纖維的形式聚合在一起,成乳白色,能夠阻擋90%的光線。并且這種可逆過程是在兩三度溫差范圍內完成的。具有傳感功能的高分子材料,這種與傳感器結合起來的高分子材料,已成為智能材料的一個新特點。例如,裝有壓電陶瓷傳感器的機器人,可以靈敏地感覺到軸承脫離時摩擦力突然變化的情況,并迅速作出握緊反應。
(三)稀土催化材料
稀土元素具有獨特的化學性能和物理組成,以稀土元素為基礎的稀土功能材料在信息、生物、新技術、新能源以及環境保護等現代科學技術和現代工業發展中起著十分重要的作用,稀土催化材料比傳統的貴金屬催化材料相比,具有資源豐度高、成本低、生產工藝水平高以及性能優越等方面的優勢。稀土催化材料不僅能夠提高生產效率,最重要的是能夠節約資源和能源,進而減少環境污染。上世紀60年代,中科院長春應用化學研究所運用稀土化合物組成新型催化劑用于二烯烴的聚合以及橡膠的制備,打破了傳統的Z-N催化劑,取得重大研究進展。目前稀土催化材料大量運用在能源環境領域中,如汽車尾氣凈化、工業廢氣以及人居環境凈化等方面。
(四)生物醫用材料
生物醫學材料指的是一類具有特殊性能、特種功能,用于人工器官、外科修復、理療康復、診斷、治療疾患,而對人體組織不會產生不良影響的材料。高分子合成的生物醫用材料通過分子設計和聚合,能夠獲得具有良好物理性能和生物相容性的生物材料,其中高分子軟材料常用做為人體軟組織如血管、食道和指關節等的替代品。合成的高分子硬材料可以用作人工硬腦膜、籠架球形的人工心臟瓣膜的球形閥等;液態的合成材料如室溫硫化硅橡膠可以用作注入式組織修補材料。
三、結束語
新型高分子材料對人們的日常生活和工作產生越來越大的影響,本文從幾個方面介紹新型智能高分子材料。主要包括高分子材料的含義,發展現狀和高分子材料的應用等幾方面內容。作為一種與國民經濟、高科技技術和現代化生活密切相關重要的材料已經在各個領域中發揮了巨大的作用,人類已經進入了高分子時代。
參考文獻:
【關鍵詞】高分子材料 涂層 泵維修 技術與應用
1 高分子的分類和特點
1.1 高分子分類
按照不同的標準,高分子有很多的分法,不過主要還是以下幾種分法:高分子化合物按照其來源分,主要分為合成高分子化合物和天然高分子化合物兩種。而在天然的有機高分子化合物中。其成份有淀粉、纖維素、蛋白質、天然橡膠這幾類;按照高分子化合物結構中的分子鏈分類,可分為支鏈型高分子、線型高分子和體型高分子;按照高分子化合物受熱時表現的行為不同可將其分為熱塑性高分子和熱固性高分子。按照高分子化合物的使用情況和工藝性質分類,可分為塑料、橡膠、纖維、涂料、黏合劑和密封材料。
1.2 高分子特點
高分子涂層材料是近幾年年來在機械制造業和機械修理業當中,快速迅猛發展起來的一項新型材料和新技術。它能夠將單一材料的機械零件轉化成為復合型材料結構,以金屬為基體以便可以承受零件設計的強度,以高分子材料涂層為表面用來改善零件的耐磨性、防震性和抗腐蝕性等。高分子化合物擁有很多跟低分子化合物不同的特殊性能,比如其機械強度較大、可塑性很好、彈性也較高、硬度非常大、耐熱、耐磨、耐溶劑、耐腐蝕、氣密性恨好、電絕緣性強等,由于高分子材料具有以上的一些特性,使其在各行各業有了比較廣闊的應用。可以見得我們平常使用的普通高分子材料,均是將各種添加劑加入高分子化合物中所得到的,這些高分子化合物的性質決定了高分子材料的一些基本性能,因此各種不同添加劑的作用就是在于能夠更好地發揮、保持和改進高分子化合物的性能,滿足對設備的不同要求,能用在更多不同的方面。
2 高分子涂層與泵維修方面
2.1 泵涂層的防腐性能
在泵工作過程中,經常會輸送帶有酸性或者堿性的具有腐蝕性介質的液體或固體雜質,這樣很容易造成泵的有點腐蝕、縫隙腐蝕、氫脆、侵蝕、磨損等嚴重后果。當今在施工過程中應用比較多的防腐蝕材料是以環氧樹脂為主。在金屬材料內和環氧樹脂間都存在較好的防腐蝕耐磨性能和粘接強度較高,能夠有效的隔斷帶有腐蝕性的物質與金屬表面接觸。而對于環氧樹脂這種材料能耐絕大多數的酸、堿、鹽類的腐蝕,尤其是在氯離子侵蝕嚴重的海水中用的泵有很好的防腐效果。
2.2 泵耐磨修復和保護
市場上目前生產高分子材料的廠家主要有Devcon(得復康)、Be-lzona(貝爾佐納)、Metaline、Loctite(樂泰)、ARC、Thortex等等。從聚合物的類型可以將高分子材料分為聚氨酯(PU)和環氧樹脂(EP)二種。以聚氨酯(PU)為主要成分的涂層具有類似橡膠的彈性和韌性,細粉的固體(指的是直徑小于1 mm的顆粒)耐磨損性能比較良好,并且可以大量吸收汽蝕產生的沖擊能量。以環氧樹脂(EP)為主要成分的涂層中通常會添加碳化硅、陶瓷的粉末或者顆粒作為填料,這樣能夠非常有效的增強耐溫和耐磨損的性能。
2.3 涂層修復和傳統焊補的區別
泵在受到腐蝕或磨損的時候,傳統方法會通常采用堆焊、補焊等修補方法,這種方法很容易導致局部產生熱應力變形,慢慢改變裝配的尺寸,修補后就不能恢復到正常的組裝狀態了,嚴重時甚至會導致整個部件成為廢品。如果用高分子涂層去修復工件,修復涂層在施工時就會呈現出流體狀,在這種情況下再在常溫常壓下16 個小時就可以完全固化,這種方法不會產生熱應力,部件修復后就可以順利裝配。
2.4 涂覆后泵能節能增效
由于鑄造缺陷或加工不良等原因,泵過流部件表面經常會出現粗糙的表面,這樣會導致摩擦阻力發熱,然后引起能量損失。我們常規減小阻力的方法主要是精密機加工、拋光等;亦或者采用不銹鋼材料來增強表面的光潔度,這樣不僅會大大增加生產成本,而且拋光的金屬表面更不能解決腐蝕等問題,特別是在海水介質多的條件下,氯離子濃度極高,很容易侵蝕不銹鋼的表面。受腐蝕的金屬慢慢表面產生凹坑和裂縫,但如果采用堆焊的方法去修復,就容易導致熱應力變形,最終泵體無法回裝。另外,本體金屬和焊縫金屬會容易形成原電池,構成電解雙金屬腐蝕效應,導致第二次腐蝕。刷涂或噴涂陶瓷環氧樹脂,施工后其會流成非常光滑的表面,而且表面也具有油性疏水性,可以大大降低流體的阻力。施工時先用膏狀陶瓷修補劑刮抹到金屬表面來填補凹坑。再在兩邊刷涂陶瓷防護劑,使得最終表面變得更加光滑。
3 高分子涂層在實際中的應用
從20世紀初期以來,蘇爾壽泵業上海技術服務中心(簡稱蘇爾壽)使用了高分子材料涂層的方法,已經修復了40多套造紙紙漿泵、50多套火電廠FGD漿液循環泵的葉輪、側板及泵殼。并且,對于水處理用泵、冷卻水循環泵、真空泵和攪拌器葉輪的防腐涂層也取得了非常好的效果。具體應用領域見表1。
4 結語
由于高分子化合物具有相對分子質量很大,一般都處于固體或凝膠狀態,具有很好的機械強度的特點,又因為其分子是由共價鍵結合而形成的,因此有非常好的絕緣性和耐腐蝕性能,而且由于其分子鏈較長,分子的長度與直徑之比大于一千,因而有較好的高彈性和可塑性。另外,高分子涂層具有高彈性、熔融性、溶解性、溶液的行為和結晶性等方面特性,所以,高分子涂層在高溫油泵蠟油泵、輻射泵等泵的維修中擁有很大的優勢,可以解決傳統修理方法不能解決的很多問題。因此,高分子涂層在今后維修泵的過程中應用會越來越廣泛。
參考文獻
[1] 洪嘯吟,馮漢保.涂料化學[M].北京:科學出版社,2006